Diketahui f(x, y) = In √x+y/x-y Tunjukkan bahwa fxy =

Berikut ini adalah pertanyaan dari sabiraarrasyida16 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Diketahui f(x, y) = In √x+y/x-y Tunjukkan bahwa fxy = fyx.​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

\boxed{\,\begin{aligned}\vphantom{\Bigg|}&f_{xy}=f_{yx}=-\frac{x^2+y^2}{{\left(x^2-y^2\right)}^2}\\\vphantom{\bigg|}&\therefore\ f_{xy}=f_{yx}{\sf\ terbukti!}\end{aligned}\,}

Penjelasan dengan langkah-langkah:

Diketahui:
\begin{aligned}f(x,y)&=\ln\left(\sqrt{\frac{x+y}{x-y}}\,\right)\end{aligned}

Kita akan menunjukkan/membuktikan bahwa:
f_{xy}=f_{yx}

PEMBUKTIAN

\begin{aligned}f(x,y)&=\ln\left(\sqrt{\frac{x+y}{x-y}}\right)\\&=\frac{1}{2}\ln\left(\frac{x+y}{x-y}\right)\\\end{aligned}

Turunan parsial pertama

\begin{aligned}f_{x}&=\frac{\partial f}{\partial x}\\&=\frac{\partial}{\partial x}\left(\frac{1}{2}\ln\left(\frac{x+y}{x-y}\right)\right)\\&=\frac{1}{2}\cdot\frac{\partial}{\partial x}\ln\left(\frac{x+y}{x-y}\right)\\&=\frac{1}{2}\cdot\frac{1}{\frac{x+y}{x-y}}\cdot\frac{\partial }{\partial x}\left(\frac{x+y}{x-y}\right)\end{aligned}
\begin{aligned}&=\frac{\cancel{x-y}}{2(x+y)}\cdot\frac{\left[\frac{\partial }{\partial x}(x+y)\right](x-y)-(x+y)\left[\frac{\partial }{\partial x}(x-y)\right]}{(x-y)^{\cancel{2}}}\\&=\frac{1}{2(x+y)}\cdot\frac{(x-y)-(x+y)}{(x-y)}\\&=\frac{1}{\cancel{2}(x+y)}\cdot\frac{-\cancel{2}y}{(x-y)}\\&=-\frac{y}{(x+y)(x-y)}\\f_{x}&=-\frac{y}{x^2-y^2}\end{aligned}

\begin{aligned}f_{y}&=\frac{\partial f}{\partial y}\\&=\frac{\partial}{\partial y}\left(\frac{1}{2}\ln\left(\frac{x+y}{x-y}\right)\right)\\&=\frac{1}{2}\cdot\frac{\partial}{\partial y}\ln\left(\frac{x+y}{x-y}\right)\\&=\frac{1}{2}\cdot\frac{1}{\frac{x+y}{x-y}}\cdot\frac{\partial }{\partial y}\left(\frac{x+y}{x-y}\right)\end{aligned}
\begin{aligned}&=\frac{\cancel{x-y}}{2(x+y)}\cdot\frac{\left[\frac{\partial }{\partial y}(x+y)\right](x-y)-(x+y)\left[\frac{\partial }{\partial y}(x-y)\right]}{(x-y)^{\cancel{2}}}\\&=\frac{1}{2(x+y)}\cdot\frac{(x-y)+(x+y)}{(x-y)}\\&=\frac{1}{\cancel{2}(x+y)}\cdot\frac{\cancel{2}x}{(x-y)}\\&=\frac{x}{(x+y)(x-y)}\\f_{y}&=\frac{x}{x^2-y^2}\end{aligned}

Turunan Parsial Kedua

\begin{aligned}f_{xy}&=\frac{\partial f_x}{\partial y}\\&=\frac{\partial}{\partial y}\left(-\frac{y}{x^2-y^2}\right)\\&=-\frac{\partial}{\partial y}\left(\frac{y}{x^2-y^2}\right)\\&=-\frac{\left(\frac{\partial}{\partial y}y\right)\left(x^2-y^2\right)-y\left[\frac{\partial}{\partial y}\left(x^2-y^2\right)\right]}{{\left(x^2-y^2\right)}^2}\\&=-\frac{x^2-y^2-y(-2y)}{{\left(x^2-y^2\right)}^2}\end{aligned}
\begin{aligned}&=-\frac{x^2-y^2+2y^2}{{\left(x^2-y^2\right)}^2}\\f_{xy}&=-\frac{x^2+y^2}{{\left(x^2-y^2\right)}^2}\\\end{aligned}
\begin{aligned}f_{yx}&=\frac{\partial f_y}{\partial x}\\&=\frac{\partial}{\partial x}\left(\frac{x}{x^2-y^2}\right)\\&=\frac{\left(\frac{\partial}{\partial x}x\right)\left(x^2-y^2\right)-x\left[\frac{\partial}{\partial x}\left(x^2-y^2\right)\right]}{{\left(x^2-y^2\right)}^2}\\&=\frac{x^2-y^2-x(2x)}{{\left(x^2-y^2\right)}^2}\end{aligned}
\begin{aligned}&=\frac{x^2-2x^2-y^2}{{\left(x^2-y^2\right)}^2}\\&=\frac{-x^2-y^2}{{\left(x^2-y^2\right)}^2}=\frac{-\left(x^2+y^2\right)}{{\left(x^2-y^2\right)}^2}\\f_{yx}&=-\frac{x^2+y^2}{{\left(x^2-y^2\right)}^2}\\\end{aligned}

Kesimpulan

\boxed{\,\begin{aligned}\vphantom{\Bigg|}&f_{xy}=f_{yx}=-\frac{x^2+y^2}{{\left(x^2-y^2\right)}^2}\\\vphantom{\bigg|}&\therefore\ f_{xy}=f_{yx}{\sf\ terbukti!}\end{aligned}\,}
\blacksquare

Semoga dengan pertanyaan yang sudah terjawab oleh henriyulianto dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Fri, 13 Jan 23