Suatu bahan radioaktif yang semula bermassa 100 gr mengalami reaksi

Berikut ini adalah pertanyaan dari Kalyope pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Suatu bahan radioaktif yang semula bermassa 100 gr mengalami reaksi kimia sehingga massanya menyusut 10 % dari massa sebelumnya setiap 12 jam. Tentukan massa bahan radioaktif tersebut setelah 10 hari ?Tolong kak pls :(​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Suatu bahan radioaktif yang semula bermassa 100 gr mengalami reaksi kimia sehingga massanya menyusut 10 % dari massa sebelumnya setiap 12 jam. Maka massa bahan radioaktif tersebut setelah 10 hari adalah \text U_{20} = 10^{ ~-17} gram

Pendahuluan

Barisan geometri  merupakan suatu barisan bilangan yang mempunyai rasio (pembanding) bernilai tetap.

Barisan geometri tersebut dapat dinyatakan sebagai  : U₁, U₂, U₃, . . .    . \text U_{\text n} Sedangkan rumus suku ke-n barisan geometri ditentukan dengan rumus : \boxed {\text U_{\text n} = \text a~.~\text r^{\text n - 1}}

Deret geometri adalah jumlah dari beberapa suku berurutan yang terdapat dalam barisan geometri dengan rasio tetap.

Deret geometrinya dapat dinyatakan sebagai : U₁ + U₂ + U₃ +  . . .    + \text U_{\text n}

Rumus Jumlah n suku suatu Deret Geometri adalah :

\boxed{~\text S_{\text n} = \frac{\text a~.~(\text r^{\text n} - 1)}{(\text r - 1)}~} Jika : r > 1 atau

\boxed{~\text S_{\text n} = \frac{\text a~.~(1 - \text r^{\text n})}{(1 - \text r)} ~} Jika : r < 1

Keterangan :

a = suku awal (U₁)

r = rasio (pembanding) = \frac{\text U_2}{\text U_1} = \frac{\text U_{\text n}}{\text U_{\text n ~-~ 1}}

\text U_{\text n} = suku ke-n

\text S_{\text n} = Jumlah suku ke-n

Diketahui :

Massa awal bahan radioaktif = 100 gr

Penyusutan = 10% tiap 12 jam

Lama waktu = 10 hari

Ditanyakan :

Massa setelah 10 hari = . . .    .

Jawab :

Soal tersebut merupakan bentuk soal barisan geometri dengan ketentuan :

a = \text U_1 = 100

r = 10% = \frac{1}{10}

Menentukan nilai n (banyak suku)

1 hari semalam = 24 jam, maka massa mengalami penyusutan 2x

Sehingga dalam 10 hari, massa radioaktif akan menyusut sebanyak :

2 x 10 = 20 kali

n = 20

Untuk a = 100, r = \frac{1}{10} dan n = 20, maka \text U_{\text n} didapat : \text U_{\text n} = \text a~.~\text r^{\text n -1}

\text U_{\text n} = \text a~.~\text r^{\text n -1}

\text U_{20} = 100~.~(\frac{1}{10}) ^{20 -1}

\text U_{20} = 100~.~(\frac{1}{10}) ^{19}

\text U_{20} = 10^2~.~10^{-19}

\text U_{20} = 10^{2 - 19}

\text U_{20} = 10^{ ~-17}

∴ Jadi suku ke-12 barisan geometri tersebut adalah \text U_{20} = 10^{ ~-17} gram

Pelajari Lebih Lanjut

  1. Panjang tali : yomemimo.com/tugas/94600
  2. Suku ke-5 jika U₃ = 3 dan U₆ = 24 : yomemimo.com/tugas/4508724
  3. Deret geometri : yomemimo.com/tugas/15151970
  4. Deret geometri : yomemimo.com/tugas/104749
  5. Barisan dan deret geometri : yomemimo.com/tugas/986059
  6. Jumlah 6 suku pertama deret geometri 2 + 6 + 18 + … : yomemimo.com/tugas/46742343
  7. Menentukan suku ke-10 barisan geometri yomemimo.com/tugas/50444542
  8. Menentukan suku ke-12 barisan geometri : yomemimo.com/tugas/50696041

_______________________________________________________

Detail Jawaban

Kelas            : 9

Mapel           : Matematika

Kategori       : Barisan dan Deret

Kode             : 9.2.2

Kata Kunci   : Barisan geometri, suku pertama, rasio, suku ke-n

#CerdasBersamaBrainly

#BelajarBersamaBrainly

Semoga dengan pertanyaan yang sudah terjawab oleh MisterBlank dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Sat, 02 Jul 22