kalkulis semester 1 ​

Berikut ini adalah pertanyaan dari djiebonz22 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Kalkulis semester 1 ​
kalkulis semester 1 ​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

1.

lim(x_4) ∛(x/(-7x+1)) = ∛(4/(-7.4+1) =

 \frac{ - \sqrt[3]{4} }{3}

2.

lim(x_2) (-2x^2+4x)/(x-2)

= lim(x_2) (-2x)(x-2)/(x-2)

= lim(x_2) (-2x) = -2.2 = -4

3.

lim(x_2) (x^2-16)/(x^2-5x-6)

= (2^2-16)/(2^2-5.2-6) = -12/-22 = 6/11

4.

lim(x_1/2) (3+2x)/(5-x)

= (3+2.(1/2)/(5-1/2) = 4/(9/2) = 8/9

5.

lim(x_3) (x^3-27)/(x-3)

= lim(x_3) [(x-3)(x^2+9) - (-3x^2+9x)]/(x-3)

= lim(x_3) [(x-3)(x^2+9) + 3x(x-3)]/(x-3)

= lim(x_3) (x^2+9) + 3x

= 3^2+9+3.3 = 27

6.

lim(y_-3) √[(y^2-y)/(2y^2+7y+3)]

= lim(y_-3) √[y(y-1)/(2y+1)(y+3)]

Not defined because,

lim(y_-3⁻) √[y(y-1)/(2y+1)(y+3)] = ∞

Going to -3 from left hand, its denominator have value almost positif zero. So, positif numerator divided by almost positif zero is going bigger and bigger to infinity and then sqrt of it is infinity.

lim(y_-3⁺) √[y(y-1)/(2y+1)(y+3)] = i ∞

Going to -3 from right hand, its denominator have value almost negative zero. So, positif numerator divided by almost negative zero is going bigger and bigger to negative infinity and then sqrt of it is i times infinity.

7.

lim(y_3) √[(2y^3-5y^2-2y-3)/(4y^3-13y^2+4y-3)]

= lim(y_3) √[(y-3)(2y^2+y+1)/(y-3)(4y^2-y+3)]

= lim(y_3) √[(2y^2+y+1)/(4y^2-y+3)]

= √[(2(3)^2+3+1)/(4(3)^2-3+3)] = √(22/36)

Untuk no. 8 sampai selanjutnya semoga yang lain bisa melengkapi

Semoga dengan pertanyaan yang sudah terjawab oleh Edo1989 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Wed, 18 Jan 23