Berikut ini adalah pertanyaan dari Zdytx pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas
Trigonometribuktikan jika hasil dari

...
...
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
![[tex] \displaystyle \rm\frac{ \sin( \alpha ) }{1 + \cos( \alpha ) } + \frac{ \sin( \alpha ) }{ 1 - \cos( \alpha ) } = 2 \csc( \alpha ) [/tex][tex] \small \displaystyle \rm \left(\frac{ \sin( \alpha ) }{1 + \cos( \alpha ) } \times \frac{1 - \cos( \alpha ) }{1 - \cos( \alpha )} \right) + \left(\frac{ \sin( \alpha ) }{ 1 - \cos( \alpha ) } \times \frac{1 + \cos( \alpha ) }{1 + \cos( \alpha )} \right)= 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ \sin( \alpha ) - \sin( \alpha ) \cos( \alpha ) }{1 - \cos^{2} ( \alpha ) } + \frac{ \sin( \alpha )+ \sin( \alpha ) \cos( \alpha )}{ 1 - \cos^{2} ( \alpha ) } = 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ \sin( \alpha ) - \cancel{\sin( \alpha ) \cos( \alpha ) } }{1 - \cos^{2} ( \alpha ) } + \frac{ \sin( \alpha )+ \cancel{\sin( \alpha ) \cos( \alpha )}}{ 1 - \cos^{2} ( \alpha ) } = 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ \sin( \alpha ) }{1 - \cos^{2} ( \alpha ) } + \frac{ \sin( \alpha )}{ 1 - \cos^{2} ( \alpha ) } = 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ 2\sin( \alpha ) }{1 - \cos^{2} ( \alpha ) } = 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ 2\sin( \alpha ) }{ \sin^{2} ( \alpha ) } = 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ 2\sin( \alpha ) }{ \sin ( \alpha ) \sin( \alpha ) } = 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ 2 \cancel{\sin( \alpha ) }}{ \sin ( \alpha ) \cancel{\sin( \alpha ) } }= 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ 2 }{ \sin ( \alpha ) }= 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ 2 }{ \frac{1}{ \csc( \alpha ) } }= 2 \csc( \alpha ) [/tex][tex] \boxed {\small\displaystyle\rm2 \csc( \alpha ) = 2 \csc( \alpha ) } \: \: \: \rightarrow \: \: \: terbukti[/tex]](https://id-static.z-dn.net/files/d21/ffb2f2a4c29771c472441818eaf31261.jpg)
![[tex] \displaystyle \rm\frac{ \sin( \alpha ) }{1 + \cos( \alpha ) } + \frac{ \sin( \alpha ) }{ 1 - \cos( \alpha ) } = 2 \csc( \alpha ) [/tex][tex] \small \displaystyle \rm \left(\frac{ \sin( \alpha ) }{1 + \cos( \alpha ) } \times \frac{1 - \cos( \alpha ) }{1 - \cos( \alpha )} \right) + \left(\frac{ \sin( \alpha ) }{ 1 - \cos( \alpha ) } \times \frac{1 + \cos( \alpha ) }{1 + \cos( \alpha )} \right)= 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ \sin( \alpha ) - \sin( \alpha ) \cos( \alpha ) }{1 - \cos^{2} ( \alpha ) } + \frac{ \sin( \alpha )+ \sin( \alpha ) \cos( \alpha )}{ 1 - \cos^{2} ( \alpha ) } = 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ \sin( \alpha ) - \cancel{\sin( \alpha ) \cos( \alpha ) } }{1 - \cos^{2} ( \alpha ) } + \frac{ \sin( \alpha )+ \cancel{\sin( \alpha ) \cos( \alpha )}}{ 1 - \cos^{2} ( \alpha ) } = 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ \sin( \alpha ) }{1 - \cos^{2} ( \alpha ) } + \frac{ \sin( \alpha )}{ 1 - \cos^{2} ( \alpha ) } = 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ 2\sin( \alpha ) }{1 - \cos^{2} ( \alpha ) } = 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ 2\sin( \alpha ) }{ \sin^{2} ( \alpha ) } = 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ 2\sin( \alpha ) }{ \sin ( \alpha ) \sin( \alpha ) } = 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ 2 \cancel{\sin( \alpha ) }}{ \sin ( \alpha ) \cancel{\sin( \alpha ) } }= 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ 2 }{ \sin ( \alpha ) }= 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ 2 }{ \frac{1}{ \csc( \alpha ) } }= 2 \csc( \alpha ) [/tex][tex] \boxed {\small\displaystyle\rm2 \csc( \alpha ) = 2 \csc( \alpha ) } \: \: \: \rightarrow \: \: \: terbukti[/tex]](https://id-static.z-dn.net/files/dad/174af3f337183d24f14b6ecc19995171.jpg)
![[tex] \displaystyle \rm\frac{ \sin( \alpha ) }{1 + \cos( \alpha ) } + \frac{ \sin( \alpha ) }{ 1 - \cos( \alpha ) } = 2 \csc( \alpha ) [/tex][tex] \small \displaystyle \rm \left(\frac{ \sin( \alpha ) }{1 + \cos( \alpha ) } \times \frac{1 - \cos( \alpha ) }{1 - \cos( \alpha )} \right) + \left(\frac{ \sin( \alpha ) }{ 1 - \cos( \alpha ) } \times \frac{1 + \cos( \alpha ) }{1 + \cos( \alpha )} \right)= 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ \sin( \alpha ) - \sin( \alpha ) \cos( \alpha ) }{1 - \cos^{2} ( \alpha ) } + \frac{ \sin( \alpha )+ \sin( \alpha ) \cos( \alpha )}{ 1 - \cos^{2} ( \alpha ) } = 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ \sin( \alpha ) - \cancel{\sin( \alpha ) \cos( \alpha ) } }{1 - \cos^{2} ( \alpha ) } + \frac{ \sin( \alpha )+ \cancel{\sin( \alpha ) \cos( \alpha )}}{ 1 - \cos^{2} ( \alpha ) } = 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ \sin( \alpha ) }{1 - \cos^{2} ( \alpha ) } + \frac{ \sin( \alpha )}{ 1 - \cos^{2} ( \alpha ) } = 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ 2\sin( \alpha ) }{1 - \cos^{2} ( \alpha ) } = 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ 2\sin( \alpha ) }{ \sin^{2} ( \alpha ) } = 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ 2\sin( \alpha ) }{ \sin ( \alpha ) \sin( \alpha ) } = 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ 2 \cancel{\sin( \alpha ) }}{ \sin ( \alpha ) \cancel{\sin( \alpha ) } }= 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ 2 }{ \sin ( \alpha ) }= 2 \csc( \alpha ) [/tex][tex] \small\displaystyle\rm\frac{ 2 }{ \frac{1}{ \csc( \alpha ) } }= 2 \csc( \alpha ) [/tex][tex] \boxed {\small\displaystyle\rm2 \csc( \alpha ) = 2 \csc( \alpha ) } \: \: \: \rightarrow \: \: \: terbukti[/tex]](https://id-static.z-dn.net/files/de5/6ffe036e6f4925b625cc8b226720c13b.jpg)
Semoga dengan pertanyaan yang sudah terjawab oleh Rixxel17 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Fri, 05 Aug 22