(+50) KuMat - Kuis Matematika Materi: Trigonometri Buktikan bahwa [tex]\begin{aligned}\cos\left(\frac{\pi }{7}\right)-\cos\left(\frac{2\pi}{7}\right)+\cos\left(\frac{3\pi}{7}\right)=\bf\frac{1}{2}\end{aligned}[/tex]

Berikut ini adalah pertanyaan dari henriyulianto pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

(+50) KuMat - Kuis MatematikaMateri: Trigonometri

Buktikan bahwa
\begin{aligned}\cos\left(\frac{\pi }{7}\right)-\cos\left(\frac{2\pi}{7}\right)+\cos\left(\frac{3\pi}{7}\right)=\bf\frac{1}{2}\end{aligned}

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawab: cos(π/7) – cos (2π/7) + cos (3π/7) = ½ terbukti.

PEMBUKTIAN

Metode 1

Kita ingat identitas trigonometri:

  • 2sin(α)cos(α) = sin(2α)
  • 2sin(α)cos(β) = sin(α+β) + sin(α–β)
  • sin(–α) = –sin(α)
  • cos(π–α) = –cos(α)
  • sin(π–α) = sin(α)

Misalkan x = cos(π/7) – cos (2π/7) + cos (3π/7). Maka,
x = cos(π/7) + cos(π – 2π/7) + cos(3π/7)
x = cos(π/7) + cos(3π/7) + cos(5π/7)

Kemudian, kita kalikan kedua ruas dengan 2sin(π/7).
x · 2sin(π/7) = 2sin(π/7)cos(π/7) + 2sin(π/7)cos(3π/7) + 2sin(π/7)cos(5π/7)
⇒ 2x·sin(π/7) = sin(2π/7) + sin(4π/7) + sin(–2π/7) + sin(6π/7) + sin(–4π/7)
⇒ 2x·sin(π/7) = sin(2π/7) + sin(4π/7) – sin(2π/7) + sin(6π/7) – sin(4π/7)
⇒ 2x·sin(π/7) = sin(2π/7) – sin(2π/7) + sin(4π/7) – sin(4π/7) + sin(6π/7)
⇒ 2x·sin(π/7) = sin(6π/7)
⇒ 2x·sin(π/7) = sin(π – π/7)
⇒ 2x·sin(π/7) = sin(π/7)
⇒ 2x = sin(π/7)/sin(π/7)
⇒ 2x = 1
⇒ x = ½
⇒ cos(π/7) – cos (2π/7) + cos (3π/7) = ½

∴  Terbukti bahwa cos(π/7) – cos (2π/7) + cos (3π/7) = ½.

__________________

Metode 2

Selain identitas trigonometri di atas, kita ingat pula identitas:

  • cos(2α) = cos²(α) – sin²(α)
  • cos(α+β) = cos(α)cos(β) – sin(α)sin(β)

Misalkan x = cos(π/7) – cos (2π/7) + cos (3π/7).
Misalkan pula a = sin(π/7)danb = cos(π/7).

  • cos(2π/7) = b²–a²
  • cos(3π/7) = b(b²–a²) – a(2ab)

Maka,
x = b – (b²–a²) + b(b²–a²) – a(2ab)
⇒ x = b – b² + a² + b³ + b² – a²b – 2a²b
⇒ x = b – b² + b³ + a²(1–3b)

Karena sin²(α) = 1 – cos²(α), maka a² = 1 – b².
⇒ x = b – b² + b³ + (1–b²)(1–3b)
⇒ x = b – b² + b³ + 1 – b² – 3b + 3b³
x = 4b³ – 2b² – 2b + 1

Karena x = ½, maka:
½ = 4b³ – 2b² – 2b + 1
⇒ 1 = 8b³ – 4b² – 4b + 2
8b³ – 4b² – 4b + 1 = 0  ....(i)

Dengan menunjukkan bahwa 8b³ – 4b² – 4b + 1 = 0, x = ½ terbukti.

Sekarang, perhatikan bahwa cos(4π/7) = –cos(3π/7).

Jika dinyatakan dalam a dan b:

  • cos(4π/7) = cos²(2π/7) – sin²(2π/7)
    ⇒ cos(4π/7) = (b²–a²)² – (2ab)²
    ⇒ cos(4π/7) = (b²–1+b²)² – 4a²b²
    ⇒ cos(4π/7) = (2b²–1)² – 4(1–b²)b²
    ⇒ cos(4π/7) = 4b⁴ – 4b² + 1 – 4b² + 4b⁴
    cos(4π/7) = 8b⁴ – 8b² + 1
  • cos(3π/7) = b(b²–a²) – a(2ab)
    ⇒ cos(3π/7) = b³ – a²b – 2a²b
    ⇒ cos(3π/7) = b³ – 3a²b
    ⇒ cos(3π/7) = b³ – 3(1–b²)b
    ⇒ cos(3π/7) = b³ – 3b + 3b³
    cos(3π/7) = 4b³ – 3b

cos(4π/7) = –cos(3π/7)
⇒ 8b^4 – 8b² + 1 = 3b – 4b³
⇒ 8b^4 + 4b³ – 8b² – 3b + 1 = 0
(b+1)(8b³ – 4b² – 4b + 1) = 0

Sudah pasti b = cos(π/7) ≠ 1, jadi 8b³ – 4b² – 4b + 1 = 0, sesuai dengan persamaan (i) di atas. Hal ini membuktikan bahwa x = ½.

∴  Terbukti bahwa cos(π/7) – cos (2π/7) + cos (3π/7) = ½.

Jawab: cos(π/7) – cos (2π/7) + cos (3π/7) = ½ terbukti. PEMBUKTIANMetode 1Kita ingat identitas trigonometri:2sin(α)cos(α) = sin(2α)2sin(α)cos(β) = sin(α+β) + sin(α–β)sin(–α) = –sin(α)cos(π–α) = –cos(α)sin(π–α) = sin(α)Misalkan x = cos(π/7) – cos (2π/7) + cos (3π/7). Maka, x = cos(π/7) + cos(π – 2π/7) + cos(3π/7)⇒ x = cos(π/7) + cos(3π/7) + cos(5π/7)Kemudian, kita kalikan kedua ruas dengan 2sin(π/7).x · 2sin(π/7) = 2sin(π/7)cos(π/7) + 2sin(π/7)cos(3π/7) + 2sin(π/7)cos(5π/7)⇒ 2x·sin(π/7) = sin(2π/7) + sin(4π/7) + sin(–2π/7) + sin(6π/7) + sin(–4π/7)⇒ 2x·sin(π/7) = sin(2π/7) + sin(4π/7) – sin(2π/7) + sin(6π/7) – sin(4π/7)⇒ 2x·sin(π/7) = sin(2π/7) – sin(2π/7) + sin(4π/7) – sin(4π/7) + sin(6π/7)⇒ 2x·sin(π/7) = sin(6π/7)⇒ 2x·sin(π/7) = sin(π – π/7)⇒ 2x·sin(π/7) = sin(π/7)⇒ 2x = sin(π/7)/sin(π/7)⇒ 2x = 1⇒ x = ½⇒ cos(π/7) – cos (2π/7) + cos (3π/7) = ½∴  Terbukti bahwa cos(π/7) – cos (2π/7) + cos (3π/7) = ½.__________________Metode 2Selain identitas trigonometri di atas, kita ingat pula identitas:cos(2α) = cos²(α) – sin²(α)cos(α+β) = cos(α)cos(β) – sin(α)sin(β)Misalkan x = cos(π/7) – cos (2π/7) + cos (3π/7).Misalkan pula a = sin(π/7) dan b = cos(π/7).cos(2π/7) = b²–a²cos(3π/7) = b(b²–a²) – a(2ab)Maka,x = b – (b²–a²) + b(b²–a²) – a(2ab)⇒ x = b – b² + a² + b³ + b² – a²b – 2a²b⇒ x = b – b² + b³ + a²(1–3b)Karena sin²(α) = 1 – cos²(α), maka a² = 1 – b².⇒ x = b – b² + b³ + (1–b²)(1–3b)⇒ x = b – b² + b³ + 1 – b² – 3b + 3b³⇒ x = 4b³ – 2b² – 2b + 1Karena x = ½, maka:½ = 4b³ – 2b² – 2b + 1⇒ 1 = 8b³ – 4b² – 4b + 2⇒ 8b³ – 4b² – 4b + 1 = 0  ....(i)Dengan menunjukkan bahwa 8b³ – 4b² – 4b + 1 = 0, x = ½ terbukti.Sekarang, perhatikan bahwa cos(4π/7) = –cos(3π/7). Jika dinyatakan dalam a dan b:cos(4π/7) = cos²(2π/7) – sin²(2π/7)⇒ cos(4π/7) = (b²–a²)² – (2ab)²⇒ cos(4π/7) = (b²–1+b²)² – 4a²b²⇒ cos(4π/7) = (2b²–1)² – 4(1–b²)b²⇒ cos(4π/7) = 4b⁴ – 4b² + 1 – 4b² + 4b⁴⇒ cos(4π/7) = 8b⁴ – 8b² + 1cos(3π/7) = b(b²–a²) – a(2ab)⇒ cos(3π/7) = b³ – a²b – 2a²b⇒ cos(3π/7) = b³ – 3a²b⇒ cos(3π/7) = b³ – 3(1–b²)b⇒ cos(3π/7) = b³ – 3b + 3b³⇒ cos(3π/7) = 4b³ – 3bcos(4π/7) = –cos(3π/7)⇒ 8b^4 – 8b² + 1 = 3b – 4b³⇒ 8b^4 + 4b³ – 8b² – 3b + 1 = 0⇒ (b+1)(8b³ – 4b² – 4b + 1) = 0Sudah pasti b = cos(π/7) ≠ 1, jadi 8b³ – 4b² – 4b + 1 = 0, sesuai dengan persamaan (i) di atas. Hal ini membuktikan bahwa x = ½.∴  Terbukti bahwa cos(π/7) – cos (2π/7) + cos (3π/7) = ½.

Semoga dengan pertanyaan yang sudah terjawab oleh Ezachan dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Thu, 06 Oct 22