Berikut ini adalah pertanyaan dari vvibudark pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
pembahasan :
f(x) = cos 2x, untuk 0° ≤x≤ 360°.
syarat maksimum minimum f'(x) = 0
f(x) = cos 2x
f'(x) = ( -sin 2x).2
= -2sin 2x
-2sin 2x = 0
sin 2x = 0 , 2x = 360 , 2x = 180
2x = 0 x = 180⁰ x = 90⁰
x = 0⁰
2x = 540
x = 270⁰
2x = 720
x = 360⁰
jadi x = {0⁰, 90⁰, 180⁰, 270⁰, 360⁰}
cek maksimum minimum:
f(x) = cos2x
x = 0 f(0) = cos2(0) = cos0 = 1 (max)
x = 90 f(90) = cos2(90) = cos180=-1(min)
x=180 f(180) = cos360 = 1 (max)
x = 270 f(270) = cos540= -1(min)
x =360 f(360) = cos720 =1 (max)
koordinat titik balik maksimum:
(0⁰, 1)
(180⁰, 1)
(360⁰, 1)
koordinat titik balik minimum:
(90⁰, -1)
(270⁰, -1)
NILAI MINIMUM = -1
NILAI MAKSIMUM = 1
Semoga dengan pertanyaan yang sudah terjawab oleh plspls dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Mon, 19 Dec 22