x²-3x+5=0carilah X1 dan X2 dari persamaan diatas​

Berikut ini adalah pertanyaan dari TheGalaxy78 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

X²-3x+5=0

carilah X1 dan X2 dari persamaan diatas​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Penyelesaian dari persamaan  \rm x^2-3x+5=0adalah{ } atau tidak memiliki penyelesaian.

Pendahuluan :

 \rm \blacktriangleright Pengertian~dan~Bentuk~Umum

Persamaan Kuadrat adalah salah satu persamaan dalam Matematika yang salah satu variabelnya memiliki pangkat tertinggi, yaitu 2.

Bentuk umum Persamaan Kuadrat :

 \boxed{a{x}^{2} + bx + c = 0}

Bentuk umum Fungsi Kuadrat :

 \boxed{f(x) = a{x}^{2} + bx + c}

dimana :

 \hspace{0.3cm}•a = koefisien dari x², a ≠ 0

 \hspace{0.3cm}•b = koefisien dari x

 \hspace{0.3cm}•c = konstanta

 \hspace{0.3cm}•x = variabel

 \hspace{0.3cm}•x² = variabel berpangkat 2

 \\

\rm \blacktriangleright Menyelesaikan~Persamaan~Kuadrat :

1) Pemfaktoran

2) Rumus Al-Khawrizmi (abc)

 x_1 , _2 = \frac {-b \pm \sqrt{{b}^{2} - 4ac}}{2a}

3) Melengkapi Kudrat Sempurna

4) Metode Grafik

 \\

\rm \blacktriangleright Sifat~Akar~Persamaan~Kuadrat :

 (1) \: \: x_1 + x_2 = \frac {-b}{a}

 (2) \: \: x_1\: . \: x_2 = \frac {c}{a}

 \\

\rm \blacktriangleright Menyusun~Persamaan~Kuadrat~Baru :

Menentukan bentuk persamaan muadrat dari akar-akarnya yang diketahui sebagai  \rm x_1dan \rm x_2 dapat menggunakan rumus berikut :  (x-x_1)(x-x_2) =0

 \\

 \rm \blacktriangleright Grafik~Fungsi~Kuadrat

Langkah-langkah membuat grafik fungsi kuadrat :

(1) Menentukan titik potong dengan sumbu x, syaratnya f(x) = 0

(2) Menentukan titik potong dengan sumbu y, syaratnya x = 0 sehingga f(0) = c

(3) Menentukan koodinat titik balik atau puncak (x , y) :

 \hspace{0.5cm}• x (sumbu simetri) =  -\frac{b}{2a}

 \hspace{0.5cm}• y (titik ekstrim) =  \frac {D}{-4a}

 D = {b}^{2} -4ac

Pembahasan :

Diketahui :

 \rm x^2-3x+5=0

Ditanya :

Nilai  \rm x_1dan \rm x_2?

Jawab :

Dari persamaan  \rm x^2-3x+5=0 diperoleh :

  • a = 1
  • b = -3
  • c = 5

Rumus abc :

 x_1 , _2 = \frac {-b \pm \sqrt{{b}^{2} - 4ac}}{2a}

 x_1 , _2 = \frac {-(-3) \pm \sqrt{{(-3)}^{2} - 4.1.5}}{2.1}

 x_1 , _2 = \frac {3 \pm \sqrt{9- 20}}{2}

 x_1 , _2 = \frac {3 \pm \sqrt{-11}}{2}

Nilai di dalam akar tidak mungkin negatif, jadi persamaan tersebut tidak memiliki penyelesaian.

Kesimpulan :

Jadi, penyelesaian persamaan tersebut = { }.

Pelajari Lebih Lanjut :

1) Menentukan Akar-akar Penyelesaian dengan Pemfaktoran

2) Menentukan Akar-akar Penyelesaian dengan Rumus abc

3) Menentukan Akar-akar Penyelesaian dengan Melengkapi Kuadrat Sempurna

4) Menggambar Grafik Fungsi

5) Menentukan Bentuk Persamaan Kuadrat dari Akar-akarnya Telah Diketahui

Detail Jawaban :

  • Kelas : 9
  • Mapel : Matematika
  • Materi : Persamaan Kuadrat
  • Kode Kategorisasi : 9.2.9
  • Kata Kunci : Akar, Nilai

Semoga dengan pertanyaan yang sudah terjawab oleh KevinWinardi dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Fri, 24 Feb 23