Tolong kak bagian (h)​

Berikut ini adalah pertanyaan dari cindyapda pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Tolong kak bagian (h)​
Tolong kak bagian (h)​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

 \mathbb \color{aqua} \underbrace{JAWABAN}

 \begin{aligned}&&&& \sf f.&&\begin{aligned} \boxed{ \: \bf 1 \: } \end{aligned} \end{aligned} \\

 \begin{aligned}&&&& \sf g.&&\begin{aligned} \boxed{ \: \bf {3}^{7} \: } \end{aligned} \end{aligned} \\

 \begin{aligned}&&&& \sf h.&&\begin{aligned} \boxed{ \: \bf {3}^{10} \: } \end{aligned} \end{aligned}

------------------

 \mathbb \color{orange} \underbrace{PENYELESAIAN}

SOAL f :

 \begin{aligned} &\begin{aligned} \small \bf gunakan \: sifat - sifat \: eksponen \: berikut : \end{aligned} \\& \boxed{ \: \begin{aligned} \tt {a}^{m} \times {a}^{n} &= \tt {a}^{m + n} \\ \tt {a}^{m} \div {a}^{n} &= \tt {a}^{m - n} \\ \tt {a}^{0} &= \tt 1 \end{aligned} \: } \end{aligned} \\ \\

 \begin{aligned}& \implies& \boxed{ \: \begin{aligned} \small\tt \frac{ {5}^{5} }{ {5}^{2} \times {5}^{3} } &\small\tt = \frac{ {5}^{5} }{ {5}^{2 + 3} } \\ &\small\tt = \frac{ {5}^{5} }{ {5}^{5} } \\ &\tt = {5}^{5 - 5} \\ &\tt = \tt {5}^{0} \\ &\tt = \bf \red1 \end{aligned} \: }\end{aligned} \\ \\

___________________________________________

 \\

SOAL g :

 \begin{aligned} & \begin{aligned} \small \bf gunakan \: sifat - sifat \: eksponen \: berikut : \end{aligned} \\ &\boxed{ \: \begin{aligned} \tt {(a \times b)}^{n} &= \tt {a}^{n} \times {b}^{n} \\ \tt {(a \div b)}^{n} &= \tt {a}^{n} \div {b}^{n} \end{aligned} \: } \end{aligned} \\ \\

 \begin{aligned}& \implies& \boxed{ \: \begin{aligned} \small\tt \frac{ {2}^{7} \times {6}^{7} }{ {4}^{7} } &\small\tt = \frac{{(2 \times 6) }^{7} }{ {4}^{7} } \\ &\small\tt = \frac{ {12}^{7} }{ {4}^{7} } \\ &\small\tt = { \left( \frac{12}{4} \right) }^{7} \\ &\tt = \bf \red{ {3}^{7} } \end{aligned} \: }\end{aligned} \\ \\

___________________________________________

 \\

SOAL h :

 \begin{aligned} & \begin{aligned} \small \bf gunakan \: sifat - sifat \: eksponen \: berikut : \end{aligned} \\ &\boxed{ \: \begin{aligned} \tt {(a \times b)}^{n} &= \tt {a}^{n} \times {b}^{n} \\ \tt {a}^{m} \times {a}^{n} &= \tt {a}^{m + n} \end{aligned} \: } \end{aligned} \\ \\

 \begin{aligned}& \implies& \boxed{ \: \begin{aligned} \small\tt \frac{ {6}^{7} \times {3}^{3} }{ {2}^{7} } &\small\tt = \frac{ {\left( {2 \times 3} \right) }^{7} \times {3}^{3} }{ {2}^{7} } \\ &\small\tt = \frac{ \cancel{ {2}^{7} } \times {3}^{7} \times {3}^{3} }{ \cancel{ {2}^{7} }} \\ &\tt = {3}^{7} \times {3}^{3} \\ &\tt = {3}^{7 + 3} \\ &\tt = \bf \red{ {3}^{10} } \end{aligned} \: }\end{aligned}

 \colorbox{ff0000}{} \colorbox{ff4000}{}\colorbox{ff8000}{}\colorbox{ffc000}{}\colorbox{ffff00}{}\colorbox{c0ff00}{}\colorbox{80ff00}{}\colorbox{40ff00}{}\colorbox{00ff00}{}\colorbox{00ff40}{}\colorbox{00ff80}{}\colorbox{00ffc0}{}\colorbox{00ffff}{}\colorbox{00c0ff}{}\colorbox{0080ff}{}\colorbox{0040ff}{}\colorbox{0000ff}{}\colorbox{4000ff}{}\colorbox{8000ff}{}\colorbox{c000ff}{}\colorbox{ff00ff}{}\colorbox{ff00c0}{}\colorbox{ff00a0}{}\colorbox{ff0080}{}\colorbox{ff0040}{}

Semoga dengan pertanyaan yang sudah terjawab oleh 3A01 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Sat, 29 Oct 22