Soal Matematika, selesaikan dan dapatkan poin tertinggi​

Berikut ini adalah pertanyaan dari opparyeon92 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Soal Matematika, selesaikan dan dapatkan poin tertinggi​
Soal Matematika, selesaikan dan dapatkan poin tertinggi​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawab:

1. \displaystyle \begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}

2. 4 satuan luas

3. π satuan volume

4. \displaystyle -\frac{\cos(2x+1)}{2}+C

5. \displaystyle \begin{pmatrix}-6 & -5\\ 5 & 4\end{pmatrix}

Penjelasan dengan langkah-langkah:

Nomor 1.

Tentukan determinan nya

\displaystyle |M|=\begin{vmatrix}9 & 3 & 1\\ 1 & 0 & 2\\ 3 & 1 & 0\end{vmatrix}\\=9\begin{vmatrix}0 & 2\\ 1 & 0\end{vmatrix}-3\begin{vmatrix}1 & 2\\ 3 & 0\end{vmatrix}+1\begin{vmatrix}1 & 0\\ 3 & 1\end{vmatrix}\\=9[0(0)-2(1)]-3[1(0)-2(3)]+1[1(1)-0(3)]\\=9(-2)-3(-6)+1(1)\\=1

Tentukan minor nya

\displaystyle M_M=\begin{pmatrix}\begin{vmatrix}0 & 2\\ 1 & 0\end{vmatrix} & \begin{vmatrix}1 & 2\\ 3 & 0\end{vmatrix} & \begin{vmatrix}1 & 0\\ 3 & 1\end{vmatrix}\\ \begin{vmatrix}3 & 1\\ 1 & 0\end{vmatrix} & \begin{vmatrix}9 & 1\\ 3 & 0\end{vmatrix} & \begin{vmatrix}9 & 3\\ 3 & 1\end{vmatrix}\\ \begin{vmatrix}3 & 1\\ 0 & 2\end{vmatrix} & \begin{vmatrix}9 & 1\\ 1 & 2\end{vmatrix} & \begin{vmatrix}9 & 3\\ 1 & 0\end{vmatrix}\end{pmatrix}

\displaystyle =\begin{pmatrix}-2 & -6 & 1\\ -1 & -3 & 0\\ 6 & 17 & -3\end{pmatrix}

Tentukan kofaktor nya

\displaystyle M_C=\begin{pmatrix}+(-2) & -(-6) & +1\\ -(-1) & +(-3) & -0\\ +6 & -17 & +(-3)\end{pmatrix}\\=\begin{pmatrix}-2 & 6 & 1\\ 1 & -3 & 0\\ 6 & -17 & -3\end{pmatrix}

Tentukan adjoin nya

\displaystyle M_{\textrm{adj}}=\begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}

Tentukan invers nya

\displaystyle M^{-1}=\frac{1}{|M|}M_{\textrm{adj}}\\=\frac{1}{1}\begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}\\=\begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}

Nomor 2

Gambar grafik dan batas-batas nya (terlampir):

Luas dibawah kurva L = ₐ∫ᵇ f(x) dx sedangkan luas diatas kurva L = -ₐ∫ᵇ f(x) dx

\displaystyle L=L_1+L_2\\=\int_{\frac{\pi}{2}}^{\pi}2\sin x~dx-\int_{\pi}^{\frac{3\pi}{2}}2\sin x~dx\\=2\left [ -\cos x \right ]_\frac{\pi}{2}^\pi-2\left [ -\cos x \right ]_\pi^\frac{3\pi}{2}\\=2\left [ -\cos \pi+\cos \frac{\pi}{2} \right ]-2\left [ -\cos \frac{3\pi}{2}+\cos \pi \right ]\\=2[-(-1)+0]-2(-0-1)\\=2+2\\=4

Nomor 3

Sketsa grafik y = x²

\displaystyle y=x^2\\\begin{matrix}x & -2 & -1 & 0 & 1 & 2\\ y & 4 & 1 & 0 & 1 & 4\end{matrix}

Sketsa grafik y = 2 - x²

\displaystyle y=2-x^2\\\begin{matrix}x & -2 & -1 & 0 & 1 & 2\\ y & -2 & 1 & 2 & 1 & -2\end{matrix}

Karena hanya pada kuadran I, maka grafik menjadi berikut (terlampir):

Diputar terhadap sumbu Y sehingga gambar nya menjadi (terlampir):

Metode kulit tabung

\displaystyle V=2\pi\int_{a}^{b}x(y_1-y_2)dx\\=2\pi\int_{0}^{1}x(2-x^2-x^2)dx\\=2\pi\int_{0}^{1}(2x-2x^3)dx\\=2\pi\left [ x^2-\frac{x^4}{2} \right ]_0^1\\=2\pi\left \[ \left ( 1^2-\frac{1^4}{2} \right )-\left ( 0^2-\frac{0^4}{2} \right ) \right \]\\=2\pi\left ( \frac{1}{2}-0 \right )\\=\pi

Nomor 4

Metode substitusi

\displaystyle \int \sin (2x+1)dx\\=\int \sin u~\frac{du}{2}\\=\frac{1}{2}(-\cos u)+C\\=-\frac{\cos(2x+1)}{2}+C

Nomor 5

Persamaan matriks AX = B → X = A⁻¹B

\displaystyle \begin{pmatrix}3 & 4\\ 1 & 2\end{pmatrix}P=\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}\\P=\begin{pmatrix}3 & 4\\ 1 & 2\end{pmatrix}^{-1}\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}

\displaystyle =\frac{1}{3(2)-4(1)}\displaystyle \begin{pmatrix}2 & -4\\ -1 & 3\end{pmatrix}\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}\\=\begin{pmatrix}1 & -2\\ -\frac{1}{2} & \frac{3}{2}\end{pmatrix}\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}

\displaystyle =\begin{pmatrix}1(2)-2(4) & 1(1)-2(3)\\ -\frac{1}{2}(2)+\frac{3}{2}(4) & -\frac{1}{2}(1)+\frac{3}{2}(3)\end{pmatrix}\\=\begin{pmatrix}-6 & -5\\ 5 & 4\end{pmatrix}

Jawab:1. [tex]\displaystyle \begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}[/tex]2. 4 satuan luas3. π satuan volume4. [tex]\displaystyle -\frac{\cos(2x+1)}{2}+C[/tex]5. [tex]\displaystyle \begin{pmatrix}-6 & -5\\ 5 & 4\end{pmatrix}[/tex]Penjelasan dengan langkah-langkah:Nomor 1.Tentukan determinan nya[tex]\displaystyle |M|=\begin{vmatrix}9 & 3 & 1\\ 1 & 0 & 2\\ 3 & 1 & 0\end{vmatrix}\\=9\begin{vmatrix}0 & 2\\ 1 & 0\end{vmatrix}-3\begin{vmatrix}1 & 2\\ 3 & 0\end{vmatrix}+1\begin{vmatrix}1 & 0\\ 3 & 1\end{vmatrix}\\=9[0(0)-2(1)]-3[1(0)-2(3)]+1[1(1)-0(3)]\\=9(-2)-3(-6)+1(1)\\=1[/tex]Tentukan minor nya[tex]\displaystyle M_M=\begin{pmatrix}\begin{vmatrix}0 & 2\\ 1 & 0\end{vmatrix} & \begin{vmatrix}1 & 2\\ 3 & 0\end{vmatrix} & \begin{vmatrix}1 & 0\\ 3 & 1\end{vmatrix}\\ \begin{vmatrix}3 & 1\\ 1 & 0\end{vmatrix} & \begin{vmatrix}9 & 1\\ 3 & 0\end{vmatrix} & \begin{vmatrix}9 & 3\\ 3 & 1\end{vmatrix}\\ \begin{vmatrix}3 & 1\\ 0 & 2\end{vmatrix} & \begin{vmatrix}9 & 1\\ 1 & 2\end{vmatrix} & \begin{vmatrix}9 & 3\\ 1 & 0\end{vmatrix}\end{pmatrix}[/tex][tex]\displaystyle =\begin{pmatrix}-2 & -6 & 1\\ -1 & -3 & 0\\ 6 & 17 & -3\end{pmatrix}[/tex]Tentukan kofaktor nya[tex]\displaystyle M_C=\begin{pmatrix}+(-2) & -(-6) & +1\\ -(-1) & +(-3) & -0\\ +6 & -17 & +(-3)\end{pmatrix}\\=\begin{pmatrix}-2 & 6 & 1\\ 1 & -3 & 0\\ 6 & -17 & -3\end{pmatrix}[/tex]Tentukan adjoin nya[tex]\displaystyle M_{\textrm{adj}}=\begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}[/tex]Tentukan invers nya[tex]\displaystyle M^{-1}=\frac{1}{|M|}M_{\textrm{adj}}\\=\frac{1}{1}\begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}\\=\begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}[/tex]Nomor 2Gambar grafik dan batas-batas nya (terlampir):Luas dibawah kurva L = ₐ∫ᵇ f(x) dx sedangkan luas diatas kurva L = -ₐ∫ᵇ f(x) dx[tex]\displaystyle L=L_1+L_2\\=\int_{\frac{\pi}{2}}^{\pi}2\sin x~dx-\int_{\pi}^{\frac{3\pi}{2}}2\sin x~dx\\=2\left [ -\cos x \right ]_\frac{\pi}{2}^\pi-2\left [ -\cos x \right ]_\pi^\frac{3\pi}{2}\\=2\left [ -\cos \pi+\cos \frac{\pi}{2} \right ]-2\left [ -\cos \frac{3\pi}{2}+\cos \pi \right ]\\=2[-(-1)+0]-2(-0-1)\\=2+2\\=4[/tex]Nomor 3Sketsa grafik y = x²[tex]\displaystyle y=x^2\\\begin{matrix}x & -2 & -1 & 0 & 1 & 2\\ y & 4 & 1 & 0 & 1 & 4\end{matrix}[/tex]Sketsa grafik y = 2 - x²[tex]\displaystyle y=2-x^2\\\begin{matrix}x & -2 & -1 & 0 & 1 & 2\\ y & -2 & 1 & 2 & 1 & -2\end{matrix}[/tex]Karena hanya pada kuadran I, maka grafik menjadi berikut (terlampir):Diputar terhadap sumbu Y sehingga gambar nya menjadi (terlampir):Metode kulit tabung[tex]\displaystyle V=2\pi\int_{a}^{b}x(y_1-y_2)dx\\=2\pi\int_{0}^{1}x(2-x^2-x^2)dx\\=2\pi\int_{0}^{1}(2x-2x^3)dx\\=2\pi\left [ x^2-\frac{x^4}{2} \right ]_0^1\\=2\pi\left \[ \left ( 1^2-\frac{1^4}{2} \right )-\left ( 0^2-\frac{0^4}{2} \right ) \right \]\\=2\pi\left ( \frac{1}{2}-0 \right )\\=\pi[/tex]Nomor 4Metode substitusi[tex]\displaystyle \int \sin (2x+1)dx\\=\int \sin u~\frac{du}{2}\\=\frac{1}{2}(-\cos u)+C\\=-\frac{\cos(2x+1)}{2}+C[/tex]Nomor 5Persamaan matriks AX = B → X = A⁻¹B[tex]\displaystyle \begin{pmatrix}3 & 4\\ 1 & 2\end{pmatrix}P=\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}\\P=\begin{pmatrix}3 & 4\\ 1 & 2\end{pmatrix}^{-1}\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}[/tex][tex]\displaystyle =\frac{1}{3(2)-4(1)}\displaystyle \begin{pmatrix}2 & -4\\ -1 & 3\end{pmatrix}\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}\\=\begin{pmatrix}1 & -2\\ -\frac{1}{2} & \frac{3}{2}\end{pmatrix}\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}[/tex][tex]\displaystyle =\begin{pmatrix}1(2)-2(4) & 1(1)-2(3)\\ -\frac{1}{2}(2)+\frac{3}{2}(4) & -\frac{1}{2}(1)+\frac{3}{2}(3)\end{pmatrix}\\=\begin{pmatrix}-6 & -5\\ 5 & 4\end{pmatrix}[/tex]Jawab:1. [tex]\displaystyle \begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}[/tex]2. 4 satuan luas3. π satuan volume4. [tex]\displaystyle -\frac{\cos(2x+1)}{2}+C[/tex]5. [tex]\displaystyle \begin{pmatrix}-6 & -5\\ 5 & 4\end{pmatrix}[/tex]Penjelasan dengan langkah-langkah:Nomor 1.Tentukan determinan nya[tex]\displaystyle |M|=\begin{vmatrix}9 & 3 & 1\\ 1 & 0 & 2\\ 3 & 1 & 0\end{vmatrix}\\=9\begin{vmatrix}0 & 2\\ 1 & 0\end{vmatrix}-3\begin{vmatrix}1 & 2\\ 3 & 0\end{vmatrix}+1\begin{vmatrix}1 & 0\\ 3 & 1\end{vmatrix}\\=9[0(0)-2(1)]-3[1(0)-2(3)]+1[1(1)-0(3)]\\=9(-2)-3(-6)+1(1)\\=1[/tex]Tentukan minor nya[tex]\displaystyle M_M=\begin{pmatrix}\begin{vmatrix}0 & 2\\ 1 & 0\end{vmatrix} & \begin{vmatrix}1 & 2\\ 3 & 0\end{vmatrix} & \begin{vmatrix}1 & 0\\ 3 & 1\end{vmatrix}\\ \begin{vmatrix}3 & 1\\ 1 & 0\end{vmatrix} & \begin{vmatrix}9 & 1\\ 3 & 0\end{vmatrix} & \begin{vmatrix}9 & 3\\ 3 & 1\end{vmatrix}\\ \begin{vmatrix}3 & 1\\ 0 & 2\end{vmatrix} & \begin{vmatrix}9 & 1\\ 1 & 2\end{vmatrix} & \begin{vmatrix}9 & 3\\ 1 & 0\end{vmatrix}\end{pmatrix}[/tex][tex]\displaystyle =\begin{pmatrix}-2 & -6 & 1\\ -1 & -3 & 0\\ 6 & 17 & -3\end{pmatrix}[/tex]Tentukan kofaktor nya[tex]\displaystyle M_C=\begin{pmatrix}+(-2) & -(-6) & +1\\ -(-1) & +(-3) & -0\\ +6 & -17 & +(-3)\end{pmatrix}\\=\begin{pmatrix}-2 & 6 & 1\\ 1 & -3 & 0\\ 6 & -17 & -3\end{pmatrix}[/tex]Tentukan adjoin nya[tex]\displaystyle M_{\textrm{adj}}=\begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}[/tex]Tentukan invers nya[tex]\displaystyle M^{-1}=\frac{1}{|M|}M_{\textrm{adj}}\\=\frac{1}{1}\begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}\\=\begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}[/tex]Nomor 2Gambar grafik dan batas-batas nya (terlampir):Luas dibawah kurva L = ₐ∫ᵇ f(x) dx sedangkan luas diatas kurva L = -ₐ∫ᵇ f(x) dx[tex]\displaystyle L=L_1+L_2\\=\int_{\frac{\pi}{2}}^{\pi}2\sin x~dx-\int_{\pi}^{\frac{3\pi}{2}}2\sin x~dx\\=2\left [ -\cos x \right ]_\frac{\pi}{2}^\pi-2\left [ -\cos x \right ]_\pi^\frac{3\pi}{2}\\=2\left [ -\cos \pi+\cos \frac{\pi}{2} \right ]-2\left [ -\cos \frac{3\pi}{2}+\cos \pi \right ]\\=2[-(-1)+0]-2(-0-1)\\=2+2\\=4[/tex]Nomor 3Sketsa grafik y = x²[tex]\displaystyle y=x^2\\\begin{matrix}x & -2 & -1 & 0 & 1 & 2\\ y & 4 & 1 & 0 & 1 & 4\end{matrix}[/tex]Sketsa grafik y = 2 - x²[tex]\displaystyle y=2-x^2\\\begin{matrix}x & -2 & -1 & 0 & 1 & 2\\ y & -2 & 1 & 2 & 1 & -2\end{matrix}[/tex]Karena hanya pada kuadran I, maka grafik menjadi berikut (terlampir):Diputar terhadap sumbu Y sehingga gambar nya menjadi (terlampir):Metode kulit tabung[tex]\displaystyle V=2\pi\int_{a}^{b}x(y_1-y_2)dx\\=2\pi\int_{0}^{1}x(2-x^2-x^2)dx\\=2\pi\int_{0}^{1}(2x-2x^3)dx\\=2\pi\left [ x^2-\frac{x^4}{2} \right ]_0^1\\=2\pi\left \[ \left ( 1^2-\frac{1^4}{2} \right )-\left ( 0^2-\frac{0^4}{2} \right ) \right \]\\=2\pi\left ( \frac{1}{2}-0 \right )\\=\pi[/tex]Nomor 4Metode substitusi[tex]\displaystyle \int \sin (2x+1)dx\\=\int \sin u~\frac{du}{2}\\=\frac{1}{2}(-\cos u)+C\\=-\frac{\cos(2x+1)}{2}+C[/tex]Nomor 5Persamaan matriks AX = B → X = A⁻¹B[tex]\displaystyle \begin{pmatrix}3 & 4\\ 1 & 2\end{pmatrix}P=\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}\\P=\begin{pmatrix}3 & 4\\ 1 & 2\end{pmatrix}^{-1}\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}[/tex][tex]\displaystyle =\frac{1}{3(2)-4(1)}\displaystyle \begin{pmatrix}2 & -4\\ -1 & 3\end{pmatrix}\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}\\=\begin{pmatrix}1 & -2\\ -\frac{1}{2} & \frac{3}{2}\end{pmatrix}\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}[/tex][tex]\displaystyle =\begin{pmatrix}1(2)-2(4) & 1(1)-2(3)\\ -\frac{1}{2}(2)+\frac{3}{2}(4) & -\frac{1}{2}(1)+\frac{3}{2}(3)\end{pmatrix}\\=\begin{pmatrix}-6 & -5\\ 5 & 4\end{pmatrix}[/tex]Jawab:1. [tex]\displaystyle \begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}[/tex]2. 4 satuan luas3. π satuan volume4. [tex]\displaystyle -\frac{\cos(2x+1)}{2}+C[/tex]5. [tex]\displaystyle \begin{pmatrix}-6 & -5\\ 5 & 4\end{pmatrix}[/tex]Penjelasan dengan langkah-langkah:Nomor 1.Tentukan determinan nya[tex]\displaystyle |M|=\begin{vmatrix}9 & 3 & 1\\ 1 & 0 & 2\\ 3 & 1 & 0\end{vmatrix}\\=9\begin{vmatrix}0 & 2\\ 1 & 0\end{vmatrix}-3\begin{vmatrix}1 & 2\\ 3 & 0\end{vmatrix}+1\begin{vmatrix}1 & 0\\ 3 & 1\end{vmatrix}\\=9[0(0)-2(1)]-3[1(0)-2(3)]+1[1(1)-0(3)]\\=9(-2)-3(-6)+1(1)\\=1[/tex]Tentukan minor nya[tex]\displaystyle M_M=\begin{pmatrix}\begin{vmatrix}0 & 2\\ 1 & 0\end{vmatrix} & \begin{vmatrix}1 & 2\\ 3 & 0\end{vmatrix} & \begin{vmatrix}1 & 0\\ 3 & 1\end{vmatrix}\\ \begin{vmatrix}3 & 1\\ 1 & 0\end{vmatrix} & \begin{vmatrix}9 & 1\\ 3 & 0\end{vmatrix} & \begin{vmatrix}9 & 3\\ 3 & 1\end{vmatrix}\\ \begin{vmatrix}3 & 1\\ 0 & 2\end{vmatrix} & \begin{vmatrix}9 & 1\\ 1 & 2\end{vmatrix} & \begin{vmatrix}9 & 3\\ 1 & 0\end{vmatrix}\end{pmatrix}[/tex][tex]\displaystyle =\begin{pmatrix}-2 & -6 & 1\\ -1 & -3 & 0\\ 6 & 17 & -3\end{pmatrix}[/tex]Tentukan kofaktor nya[tex]\displaystyle M_C=\begin{pmatrix}+(-2) & -(-6) & +1\\ -(-1) & +(-3) & -0\\ +6 & -17 & +(-3)\end{pmatrix}\\=\begin{pmatrix}-2 & 6 & 1\\ 1 & -3 & 0\\ 6 & -17 & -3\end{pmatrix}[/tex]Tentukan adjoin nya[tex]\displaystyle M_{\textrm{adj}}=\begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}[/tex]Tentukan invers nya[tex]\displaystyle M^{-1}=\frac{1}{|M|}M_{\textrm{adj}}\\=\frac{1}{1}\begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}\\=\begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}[/tex]Nomor 2Gambar grafik dan batas-batas nya (terlampir):Luas dibawah kurva L = ₐ∫ᵇ f(x) dx sedangkan luas diatas kurva L = -ₐ∫ᵇ f(x) dx[tex]\displaystyle L=L_1+L_2\\=\int_{\frac{\pi}{2}}^{\pi}2\sin x~dx-\int_{\pi}^{\frac{3\pi}{2}}2\sin x~dx\\=2\left [ -\cos x \right ]_\frac{\pi}{2}^\pi-2\left [ -\cos x \right ]_\pi^\frac{3\pi}{2}\\=2\left [ -\cos \pi+\cos \frac{\pi}{2} \right ]-2\left [ -\cos \frac{3\pi}{2}+\cos \pi \right ]\\=2[-(-1)+0]-2(-0-1)\\=2+2\\=4[/tex]Nomor 3Sketsa grafik y = x²[tex]\displaystyle y=x^2\\\begin{matrix}x & -2 & -1 & 0 & 1 & 2\\ y & 4 & 1 & 0 & 1 & 4\end{matrix}[/tex]Sketsa grafik y = 2 - x²[tex]\displaystyle y=2-x^2\\\begin{matrix}x & -2 & -1 & 0 & 1 & 2\\ y & -2 & 1 & 2 & 1 & -2\end{matrix}[/tex]Karena hanya pada kuadran I, maka grafik menjadi berikut (terlampir):Diputar terhadap sumbu Y sehingga gambar nya menjadi (terlampir):Metode kulit tabung[tex]\displaystyle V=2\pi\int_{a}^{b}x(y_1-y_2)dx\\=2\pi\int_{0}^{1}x(2-x^2-x^2)dx\\=2\pi\int_{0}^{1}(2x-2x^3)dx\\=2\pi\left [ x^2-\frac{x^4}{2} \right ]_0^1\\=2\pi\left \[ \left ( 1^2-\frac{1^4}{2} \right )-\left ( 0^2-\frac{0^4}{2} \right ) \right \]\\=2\pi\left ( \frac{1}{2}-0 \right )\\=\pi[/tex]Nomor 4Metode substitusi[tex]\displaystyle \int \sin (2x+1)dx\\=\int \sin u~\frac{du}{2}\\=\frac{1}{2}(-\cos u)+C\\=-\frac{\cos(2x+1)}{2}+C[/tex]Nomor 5Persamaan matriks AX = B → X = A⁻¹B[tex]\displaystyle \begin{pmatrix}3 & 4\\ 1 & 2\end{pmatrix}P=\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}\\P=\begin{pmatrix}3 & 4\\ 1 & 2\end{pmatrix}^{-1}\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}[/tex][tex]\displaystyle =\frac{1}{3(2)-4(1)}\displaystyle \begin{pmatrix}2 & -4\\ -1 & 3\end{pmatrix}\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}\\=\begin{pmatrix}1 & -2\\ -\frac{1}{2} & \frac{3}{2}\end{pmatrix}\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}[/tex][tex]\displaystyle =\begin{pmatrix}1(2)-2(4) & 1(1)-2(3)\\ -\frac{1}{2}(2)+\frac{3}{2}(4) & -\frac{1}{2}(1)+\frac{3}{2}(3)\end{pmatrix}\\=\begin{pmatrix}-6 & -5\\ 5 & 4\end{pmatrix}[/tex]Jawab:1. [tex]\displaystyle \begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}[/tex]2. 4 satuan luas3. π satuan volume4. [tex]\displaystyle -\frac{\cos(2x+1)}{2}+C[/tex]5. [tex]\displaystyle \begin{pmatrix}-6 & -5\\ 5 & 4\end{pmatrix}[/tex]Penjelasan dengan langkah-langkah:Nomor 1.Tentukan determinan nya[tex]\displaystyle |M|=\begin{vmatrix}9 & 3 & 1\\ 1 & 0 & 2\\ 3 & 1 & 0\end{vmatrix}\\=9\begin{vmatrix}0 & 2\\ 1 & 0\end{vmatrix}-3\begin{vmatrix}1 & 2\\ 3 & 0\end{vmatrix}+1\begin{vmatrix}1 & 0\\ 3 & 1\end{vmatrix}\\=9[0(0)-2(1)]-3[1(0)-2(3)]+1[1(1)-0(3)]\\=9(-2)-3(-6)+1(1)\\=1[/tex]Tentukan minor nya[tex]\displaystyle M_M=\begin{pmatrix}\begin{vmatrix}0 & 2\\ 1 & 0\end{vmatrix} & \begin{vmatrix}1 & 2\\ 3 & 0\end{vmatrix} & \begin{vmatrix}1 & 0\\ 3 & 1\end{vmatrix}\\ \begin{vmatrix}3 & 1\\ 1 & 0\end{vmatrix} & \begin{vmatrix}9 & 1\\ 3 & 0\end{vmatrix} & \begin{vmatrix}9 & 3\\ 3 & 1\end{vmatrix}\\ \begin{vmatrix}3 & 1\\ 0 & 2\end{vmatrix} & \begin{vmatrix}9 & 1\\ 1 & 2\end{vmatrix} & \begin{vmatrix}9 & 3\\ 1 & 0\end{vmatrix}\end{pmatrix}[/tex][tex]\displaystyle =\begin{pmatrix}-2 & -6 & 1\\ -1 & -3 & 0\\ 6 & 17 & -3\end{pmatrix}[/tex]Tentukan kofaktor nya[tex]\displaystyle M_C=\begin{pmatrix}+(-2) & -(-6) & +1\\ -(-1) & +(-3) & -0\\ +6 & -17 & +(-3)\end{pmatrix}\\=\begin{pmatrix}-2 & 6 & 1\\ 1 & -3 & 0\\ 6 & -17 & -3\end{pmatrix}[/tex]Tentukan adjoin nya[tex]\displaystyle M_{\textrm{adj}}=\begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}[/tex]Tentukan invers nya[tex]\displaystyle M^{-1}=\frac{1}{|M|}M_{\textrm{adj}}\\=\frac{1}{1}\begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}\\=\begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}[/tex]Nomor 2Gambar grafik dan batas-batas nya (terlampir):Luas dibawah kurva L = ₐ∫ᵇ f(x) dx sedangkan luas diatas kurva L = -ₐ∫ᵇ f(x) dx[tex]\displaystyle L=L_1+L_2\\=\int_{\frac{\pi}{2}}^{\pi}2\sin x~dx-\int_{\pi}^{\frac{3\pi}{2}}2\sin x~dx\\=2\left [ -\cos x \right ]_\frac{\pi}{2}^\pi-2\left [ -\cos x \right ]_\pi^\frac{3\pi}{2}\\=2\left [ -\cos \pi+\cos \frac{\pi}{2} \right ]-2\left [ -\cos \frac{3\pi}{2}+\cos \pi \right ]\\=2[-(-1)+0]-2(-0-1)\\=2+2\\=4[/tex]Nomor 3Sketsa grafik y = x²[tex]\displaystyle y=x^2\\\begin{matrix}x & -2 & -1 & 0 & 1 & 2\\ y & 4 & 1 & 0 & 1 & 4\end{matrix}[/tex]Sketsa grafik y = 2 - x²[tex]\displaystyle y=2-x^2\\\begin{matrix}x & -2 & -1 & 0 & 1 & 2\\ y & -2 & 1 & 2 & 1 & -2\end{matrix}[/tex]Karena hanya pada kuadran I, maka grafik menjadi berikut (terlampir):Diputar terhadap sumbu Y sehingga gambar nya menjadi (terlampir):Metode kulit tabung[tex]\displaystyle V=2\pi\int_{a}^{b}x(y_1-y_2)dx\\=2\pi\int_{0}^{1}x(2-x^2-x^2)dx\\=2\pi\int_{0}^{1}(2x-2x^3)dx\\=2\pi\left [ x^2-\frac{x^4}{2} \right ]_0^1\\=2\pi\left \[ \left ( 1^2-\frac{1^4}{2} \right )-\left ( 0^2-\frac{0^4}{2} \right ) \right \]\\=2\pi\left ( \frac{1}{2}-0 \right )\\=\pi[/tex]Nomor 4Metode substitusi[tex]\displaystyle \int \sin (2x+1)dx\\=\int \sin u~\frac{du}{2}\\=\frac{1}{2}(-\cos u)+C\\=-\frac{\cos(2x+1)}{2}+C[/tex]Nomor 5Persamaan matriks AX = B → X = A⁻¹B[tex]\displaystyle \begin{pmatrix}3 & 4\\ 1 & 2\end{pmatrix}P=\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}\\P=\begin{pmatrix}3 & 4\\ 1 & 2\end{pmatrix}^{-1}\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}[/tex][tex]\displaystyle =\frac{1}{3(2)-4(1)}\displaystyle \begin{pmatrix}2 & -4\\ -1 & 3\end{pmatrix}\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}\\=\begin{pmatrix}1 & -2\\ -\frac{1}{2} & \frac{3}{2}\end{pmatrix}\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}[/tex][tex]\displaystyle =\begin{pmatrix}1(2)-2(4) & 1(1)-2(3)\\ -\frac{1}{2}(2)+\frac{3}{2}(4) & -\frac{1}{2}(1)+\frac{3}{2}(3)\end{pmatrix}\\=\begin{pmatrix}-6 & -5\\ 5 & 4\end{pmatrix}[/tex]Jawab:1. [tex]\displaystyle \begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}[/tex]2. 4 satuan luas3. π satuan volume4. [tex]\displaystyle -\frac{\cos(2x+1)}{2}+C[/tex]5. [tex]\displaystyle \begin{pmatrix}-6 & -5\\ 5 & 4\end{pmatrix}[/tex]Penjelasan dengan langkah-langkah:Nomor 1.Tentukan determinan nya[tex]\displaystyle |M|=\begin{vmatrix}9 & 3 & 1\\ 1 & 0 & 2\\ 3 & 1 & 0\end{vmatrix}\\=9\begin{vmatrix}0 & 2\\ 1 & 0\end{vmatrix}-3\begin{vmatrix}1 & 2\\ 3 & 0\end{vmatrix}+1\begin{vmatrix}1 & 0\\ 3 & 1\end{vmatrix}\\=9[0(0)-2(1)]-3[1(0)-2(3)]+1[1(1)-0(3)]\\=9(-2)-3(-6)+1(1)\\=1[/tex]Tentukan minor nya[tex]\displaystyle M_M=\begin{pmatrix}\begin{vmatrix}0 & 2\\ 1 & 0\end{vmatrix} & \begin{vmatrix}1 & 2\\ 3 & 0\end{vmatrix} & \begin{vmatrix}1 & 0\\ 3 & 1\end{vmatrix}\\ \begin{vmatrix}3 & 1\\ 1 & 0\end{vmatrix} & \begin{vmatrix}9 & 1\\ 3 & 0\end{vmatrix} & \begin{vmatrix}9 & 3\\ 3 & 1\end{vmatrix}\\ \begin{vmatrix}3 & 1\\ 0 & 2\end{vmatrix} & \begin{vmatrix}9 & 1\\ 1 & 2\end{vmatrix} & \begin{vmatrix}9 & 3\\ 1 & 0\end{vmatrix}\end{pmatrix}[/tex][tex]\displaystyle =\begin{pmatrix}-2 & -6 & 1\\ -1 & -3 & 0\\ 6 & 17 & -3\end{pmatrix}[/tex]Tentukan kofaktor nya[tex]\displaystyle M_C=\begin{pmatrix}+(-2) & -(-6) & +1\\ -(-1) & +(-3) & -0\\ +6 & -17 & +(-3)\end{pmatrix}\\=\begin{pmatrix}-2 & 6 & 1\\ 1 & -3 & 0\\ 6 & -17 & -3\end{pmatrix}[/tex]Tentukan adjoin nya[tex]\displaystyle M_{\textrm{adj}}=\begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}[/tex]Tentukan invers nya[tex]\displaystyle M^{-1}=\frac{1}{|M|}M_{\textrm{adj}}\\=\frac{1}{1}\begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}\\=\begin{pmatrix}-2 & 1 & 6\\ 6 & -3 & -17\\ 1 & 0 & -3\end{pmatrix}[/tex]Nomor 2Gambar grafik dan batas-batas nya (terlampir):Luas dibawah kurva L = ₐ∫ᵇ f(x) dx sedangkan luas diatas kurva L = -ₐ∫ᵇ f(x) dx[tex]\displaystyle L=L_1+L_2\\=\int_{\frac{\pi}{2}}^{\pi}2\sin x~dx-\int_{\pi}^{\frac{3\pi}{2}}2\sin x~dx\\=2\left [ -\cos x \right ]_\frac{\pi}{2}^\pi-2\left [ -\cos x \right ]_\pi^\frac{3\pi}{2}\\=2\left [ -\cos \pi+\cos \frac{\pi}{2} \right ]-2\left [ -\cos \frac{3\pi}{2}+\cos \pi \right ]\\=2[-(-1)+0]-2(-0-1)\\=2+2\\=4[/tex]Nomor 3Sketsa grafik y = x²[tex]\displaystyle y=x^2\\\begin{matrix}x & -2 & -1 & 0 & 1 & 2\\ y & 4 & 1 & 0 & 1 & 4\end{matrix}[/tex]Sketsa grafik y = 2 - x²[tex]\displaystyle y=2-x^2\\\begin{matrix}x & -2 & -1 & 0 & 1 & 2\\ y & -2 & 1 & 2 & 1 & -2\end{matrix}[/tex]Karena hanya pada kuadran I, maka grafik menjadi berikut (terlampir):Diputar terhadap sumbu Y sehingga gambar nya menjadi (terlampir):Metode kulit tabung[tex]\displaystyle V=2\pi\int_{a}^{b}x(y_1-y_2)dx\\=2\pi\int_{0}^{1}x(2-x^2-x^2)dx\\=2\pi\int_{0}^{1}(2x-2x^3)dx\\=2\pi\left [ x^2-\frac{x^4}{2} \right ]_0^1\\=2\pi\left \[ \left ( 1^2-\frac{1^4}{2} \right )-\left ( 0^2-\frac{0^4}{2} \right ) \right \]\\=2\pi\left ( \frac{1}{2}-0 \right )\\=\pi[/tex]Nomor 4Metode substitusi[tex]\displaystyle \int \sin (2x+1)dx\\=\int \sin u~\frac{du}{2}\\=\frac{1}{2}(-\cos u)+C\\=-\frac{\cos(2x+1)}{2}+C[/tex]Nomor 5Persamaan matriks AX = B → X = A⁻¹B[tex]\displaystyle \begin{pmatrix}3 & 4\\ 1 & 2\end{pmatrix}P=\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}\\P=\begin{pmatrix}3 & 4\\ 1 & 2\end{pmatrix}^{-1}\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}[/tex][tex]\displaystyle =\frac{1}{3(2)-4(1)}\displaystyle \begin{pmatrix}2 & -4\\ -1 & 3\end{pmatrix}\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}\\=\begin{pmatrix}1 & -2\\ -\frac{1}{2} & \frac{3}{2}\end{pmatrix}\begin{pmatrix}2 & 1\\ 4 & 3\end{pmatrix}[/tex][tex]\displaystyle =\begin{pmatrix}1(2)-2(4) & 1(1)-2(3)\\ -\frac{1}{2}(2)+\frac{3}{2}(4) & -\frac{1}{2}(1)+\frac{3}{2}(3)\end{pmatrix}\\=\begin{pmatrix}-6 & -5\\ 5 & 4\end{pmatrix}[/tex]

Semoga dengan pertanyaan yang sudah terjawab oleh syakhayaz dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Thu, 16 Feb 23