Tentukan titik A dari rotasi(1,2) terhadap titik(3,4) sebesar 90°

Berikut ini adalah pertanyaan dari Brain2018 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Tentukan titik A dari rotasi(1,2) terhadap titik(3,4) sebesar 90°

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Titik A dari rotasi (1,2) terhadap titik (3,4) sebesar 90° adalah A'(5,2).

Pendahuluan :

\bf \blacktriangleright Pengertian:

Transformasi Geometri adalah ilmu matematika yang mempelajari perpindahan atau perubahan bentuk. Transformasi geometri terdiri dari : translasi, refleksi, dilatasi, dan rotasi.

 \\

\bf \blacktriangleright 1. Translasi~(pergeseran) :

•Terhadap Titik

\rm K(x,y) \xrightarrow{T\binom{a}{b}} K'(x+a,y+b)

•Terhadap Garis :

Persamaan garis umumnya : ax+by+c = 0. Apabila ditranslasi oleh \rm \binom{c}{d} maka rumusnya :

 \rm a(x'-c)+b(y'-d)+c = 0

Setelah mendapat hasilnya, maka tanda aksen (koma atas) bisa dihilangkan.

 \\

\bf \blacktriangleright 2. Refleksi~(pencerminan) :

•Terhadap sumbu X :

 \rm K(x,y)\xrightarrow{M_x} K'(x,-y)

•Terhadap sumbu Y :

 \rm K(x,y)\xrightarrow{M_y} K'(-x,y)

•Terhadap x = h :

 \rm K(x,y)\xrightarrow{M_{x=h}} K'(2h-x,y)

•Terhadap y = k :

 \rm K(x,y)\xrightarrow{M_{y=k}} K'(x,2k-y)

•Terhadap y = x :

 \rm K(x,y)\xrightarrow{M_{y=x}} K'(y,x)

•Terhadap y = -x :

 \rm K(x,y)\xrightarrow{M_{y=-x}} K'(-y,-x)

•Terhadap titik (0,0) :

 \rm K(x,y)\xrightarrow{M_{(0,0)}} K'(-x,-y)

 \\

 \bf \blacktriangleright 3. Dilatasi~(perubahan~ukuran):

•Pusat di O (0,0) :

 \rm K(x,y) \xrightarrow{D[(0,0),k]} K'(kx,ky)

•Pusat di (a,b) :

 \rm K(x,y) \xrightarrow{D[(a,b),k]} K'(k(x-a)+a,k(y-b)+b)

\\

 \bf \blacktriangleright 4. Rotasi~(perputaran) :

•Pusat Rotasi (0,0) , α = 90° = -270°:

 \rm K(x,y) \xrightarrow{R[(0,0),90^o]} K'(-y,x)

•Pusat Rotasi (0,0) , α = 180° = -180° :

 \rm K(x,y) \xrightarrow{R[(0,0),180^o]} K'(-x,-y)

•Pusat Rotasi (0,0) , α = 270° = -90° :

 \rm K(x,y) \xrightarrow{R[(0,0),270^o]} K'(y,-x)

•Pusat Rotasi (a,b) , α = 90° = -270° :

 \rm K(x,y) \xrightarrow{R[(a,b),90^o]} K'(-(y-b)+a,(x-a)+b)

•Pusat Rotasi (a,b) , α = 180° = -180° :

 \rm K(x,y) \xrightarrow{R[(a,b),180^o]} K'(-(x-a)+a, -(y-b)+b)

•Pusat Rotasi (a,b) , α = 270° = -90° :

 \rm K(x,y) \xrightarrow{R[(a,b),270^o]} K'((y-b)+a,-(x-a)+b)

Pembahasan :

Diketahui :

Titik A (1,2) dirotasi terhadap titik (3,4) sebesar 90°

Ditanya :

Bayangan titik A?

Jawab :

 \rm A(x,y) \xrightarrow{R[(a,b),90^o]} A'(-(y-b)+a,(x-a)+b)

 \rm A(1,2) \xrightarrow{R[(3,4),90^o]} A'(-(2-4)+3,(1-3)+4)

 \rm A(1,2) \xrightarrow{R[(3,4),90^o]} A'(-(-2)+3,(-2)+4)

 \rm A(1,2) \xrightarrow{R[(3,4),90^o]} A'(2+3,2)

 \rm A(1,2) \xrightarrow{R[(3,4),90^o]} A'(5,2)

Kesimpulan :

Jadi, bayangan titik A adalah A'(5,2)

Pelajari Lebih Lanjut :

1) Translasi

2) Refleksi

3) Dilatasi

4) Rotasi

5) Translasi Dilanjutkan Dengan Dilatasi

Detail Jawaban :

  • Kelas : 11
  • Mapel : Matematika
  • Materi : Transformasi Geometri
  • Kode Kategorisasi : 11.2.1.1
  • Kata Kunci : Titik, Rotasi

Semoga dengan pertanyaan yang sudah terjawab oleh KevinWinardi dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Thu, 19 Jan 23