Sin 30 x cos 45° + sin go x sin

Berikut ini adalah pertanyaan dari sitirayhanwirda pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Sin 30 x cos 45° + sin go x sin 45° / Jawabs​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

nilai dari Sin 30° x cos 45° + sin 90° x sin 45° adalah \bf{\frac{3}{4}\sqrt{2}}

 \:

Trigonometri

Pendahuluan

A.) Definisi

.) Perbandingan Trigonometri

Pada segitiga siku-siku ABC, berlaku :

*Gambar ke-1

\small\mathbf{\left(a.\right)\ \ \sin\alpha=\frac{y}{r}=\frac{de}{mi}}

\small\mathbf{\left(b.\right)\ \ \cos\alpha=\frac{x}{r}=\frac{sa}{mi}}

\small\mathbf{\left(c.\right)\ \ \tan\alpha=\frac{y}{x}=\frac{de}{sa}}

\small\mathbf{\left(d.\right)\ \ \csc\alpha=\frac{1}{\sin\alpha}=\frac{r}{y}}

\small\mathbf{\left(e.\right)\ \ \sec\alpha=\frac{1}{\cos\alpha}=\frac{r}{x}}

\small\mathbf{\left(f.\right)\ \ \cot\alpha=\frac{1}{\tan\alpha}=\frac{y}{x}}

B.) Sudut dan Kuadran

1.) Pembagian Daerah

\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{absis(x)}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{Ordinat(y)}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\end{array}}

2.) Tanda-tanda Fungsi

\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{sin}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\\&&&\\\mathbf{cos}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{tan}&\mathbf{+}&\mathbf{-}&\mathbf{+}&\mathbf{-}\end{array}}

3.) Sudut-sudut Istimewa

\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{0^{\circ}}}&\underline{\mathbf{30^{\circ}}}&\underline{\mathbf{45^{\circ}}}&\underline{\mathbf{60^{\circ}}}\\&&&\\\mathbf{sin}&\mathbf{0}&\mathbf{\frac{1}{2}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}\sqrt{3}}\\&&&\\\mathbf{cos}&\mathbf{1}&\mathbf{\frac{1}{2}\sqrt{3}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}}\\&&&\\\mathbf{tan}&\mathbf{0}&\mathbf{\frac{1}{3}\sqrt{3}}&\mathbf{1}&\mathbf{\sqrt{3}}\end{array}}  \boxed{\begin{array}{c}\underline{\mathbf{90^{\circ}}}\\\\\mathbf{1}\\\\\mathbf{0}\\\\\infty\end{array}}

4.) Sudut Berelasi

a.   Kalau kita gunakan (90°± ...) atau (270°± ...)

    1.) Fungsi berubah

\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-cos}\\\\\mathbf{cos}&\mathbf{+/-sin}\\\\\mathbf{tan}&\mathbf{+/-cot}\end{array}}

    2.)  Tanda +/- mengikuti kuadran

b.   kalau kita gunakan (180°± ...) atau (360°− ...)

    1.) Fungsi tetap

\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-sin}\\\\\mathbf{cos}&\mathbf{+/-cos}\\\\\mathbf{tan}&\mathbf{+/-tan}\end{array}}

C.) Dalil Segitiga

1.) Aturan Sinus

*gambar ke-2

\small\mathbf{\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}}

2.) Aturan Cosinus

a. a² = b² + c² - 2bc cos A atau

\small\mathbf{cos A=\frac{b^{2}+c^{2}-a^{2}}{2bc}}

b. b² = a² + c² - 2ac cos B atau

\small\mathbf{cos B=\frac{a^{2}+c^{2}-b^{2}}{2ac}}

c. c² = a² + b² - 2ab cos C atau

\small\mathbf{cos C=\frac{a^{2}+b^{2}-c^{2}}{2ab}}

 \:

 \:

Pembahasan

Diketahui :

\bf{\sin\left(30^{\circ}\right)\times\cos\left(45^{\circ}\right)+\sin\left(90^{\circ}\right)\times\sin\left(45^{\circ}\right)}

Ditanya :

berapa nilai tersebut?

Jawaban :

\bf{\sin\left(30^{\circ}\right)\times\cos\left(45^{\circ}\right)+\sin\left(90^{\circ}\right)\times\sin\left(45^{\circ}\right)}

\bf{=\frac{1}{2}\times\frac{1}{2}\sqrt{2}+1\times\frac{1}{2}\sqrt{2}}

\bf{=\frac{1}{4}\sqrt{2}+\frac{1}{2}\sqrt{2}}

\bf{=\frac{1}{4}\sqrt{2}+\frac{2}{4}\sqrt{2}}

\boxed{\bf{=\frac{3}{4}\sqrt{2}}}

 \:

 \:

Pelajari Lebih Lanjut :

 \:

 \:

Detail Jawaban :

Grade : SMA

Kode Kategorisasi : 10.2.6

Kelas : 10

Kode Mapel : 2

Pelajaran : Matematika

Bab : 6

Sub Bab : Bab 6 – Trigonometri Dasar

 \:

Kata Kunci : Trigonometri dasar, sin, cos, tan.

nilai dari Sin 30° x cos 45° + sin 90° x sin 45° adalah [tex]\bf{\frac{3}{4}\sqrt{2}}[/tex][tex] \: [/tex]TrigonometriPendahuluanA.) Definisi	.) Perbandingan TrigonometriPada segitiga siku-siku ABC, berlaku : *Gambar ke-1[tex]\small\mathbf{\left(a.\right)\ \ \sin\alpha=\frac{y}{r}=\frac{de}{mi}} [/tex][tex]\small\mathbf{\left(b.\right)\ \ \cos\alpha=\frac{x}{r}=\frac{sa}{mi}} [/tex][tex]\small\mathbf{\left(c.\right)\ \ \tan\alpha=\frac{y}{x}=\frac{de}{sa}} [/tex][tex]\small\mathbf{\left(d.\right)\ \ \csc\alpha=\frac{1}{\sin\alpha}=\frac{r}{y}}[/tex][tex]\small\mathbf{\left(e.\right)\ \ \sec\alpha=\frac{1}{\cos\alpha}=\frac{r}{x}}[/tex][tex]\small\mathbf{\left(f.\right)\ \ \cot\alpha=\frac{1}{\tan\alpha}=\frac{y}{x}}[/tex]B.) Sudut dan Kuadran1.) Pembagian Daerah [tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{absis(x)}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{Ordinat(y)}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\end{array}}[/tex]2.) Tanda-tanda Fungsi[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{sin}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\\&&&\\\mathbf{cos}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{tan}&\mathbf{+}&\mathbf{-}&\mathbf{+}&\mathbf{-}\end{array}}[/tex]3.) Sudut-sudut Istimewa[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{0^{\circ}}}&\underline{\mathbf{30^{\circ}}}&\underline{\mathbf{45^{\circ}}}&\underline{\mathbf{60^{\circ}}}\\&&&\\\mathbf{sin}&\mathbf{0}&\mathbf{\frac{1}{2}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}\sqrt{3}}\\&&&\\\mathbf{cos}&\mathbf{1}&\mathbf{\frac{1}{2}\sqrt{3}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}}\\&&&\\\mathbf{tan}&\mathbf{0}&\mathbf{\frac{1}{3}\sqrt{3}}&\mathbf{1}&\mathbf{\sqrt{3}}\end{array}} [/tex] [tex] \boxed{\begin{array}{c}\underline{\mathbf{90^{\circ}}}\\\\\mathbf{1}\\\\\mathbf{0}\\\\\infty\end{array}} [/tex]4.) Sudut Berelasia.   Kalau kita gunakan (90°± ...) atau (270°± ...)     1.) Fungsi berubah [tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-cos}\\\\\mathbf{cos}&\mathbf{+/-sin}\\\\\mathbf{tan}&\mathbf{+/-cot}\end{array}}[/tex]     2.)  Tanda +/- mengikuti kuadranb.   kalau kita gunakan (180°± ...) atau (360°− ...)     1.) Fungsi tetap[tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-sin}\\\\\mathbf{cos}&\mathbf{+/-cos}\\\\\mathbf{tan}&\mathbf{+/-tan}\end{array}}[/tex]C.) Dalil Segitiga1.) Aturan Sinus*gambar ke-2[tex]\small\mathbf{\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}}[/tex]2.) Aturan Cosinusa. a² = b² + c² - 2bc cos A atau	[tex]\small\mathbf{cos A=\frac{b^{2}+c^{2}-a^{2}}{2bc}}[/tex]b. b² = a² + c² - 2ac cos B atau	[tex]\small\mathbf{cos B=\frac{a^{2}+c^{2}-b^{2}}{2ac}}[/tex]c. c² = a² + b² - 2ab cos C atau	[tex]\small\mathbf{cos C=\frac{a^{2}+b^{2}-c^{2}}{2ab}}[/tex][tex] \: [/tex][tex] \: [/tex]PembahasanDiketahui :[tex]\bf{\sin\left(30^{\circ}\right)\times\cos\left(45^{\circ}\right)+\sin\left(90^{\circ}\right)\times\sin\left(45^{\circ}\right)}[/tex]Ditanya :berapa nilai tersebut?Jawaban :[tex]\bf{\sin\left(30^{\circ}\right)\times\cos\left(45^{\circ}\right)+\sin\left(90^{\circ}\right)\times\sin\left(45^{\circ}\right)}[/tex][tex]\bf{=\frac{1}{2}\times\frac{1}{2}\sqrt{2}+1\times\frac{1}{2}\sqrt{2}}[/tex][tex]\bf{=\frac{1}{4}\sqrt{2}+\frac{1}{2}\sqrt{2}}[/tex][tex]\bf{=\frac{1}{4}\sqrt{2}+\frac{2}{4}\sqrt{2}}[/tex][tex]\boxed{\bf{=\frac{3}{4}\sqrt{2}}}[/tex][tex] \: [/tex][tex] \: [/tex]Pelajari Lebih Lanjut :Contoh soal mencari sisi samping : https://brainly.co.id/tugas/48680192Nilai dari cos²45° + sin²240° = : https://brainly.co.id/tugas/52094991Jika cos (72,24°) = 1/5. maka sin (17,76°) ialah : https://brainly.co.id/tugas/52659460Berapakah sin(30°) × cos(60°) : https://brainly.co.id/tugas/52206983Jika A+B = 30°, maka Cos A ialah : https://brainly.co.id/tugas/52680527 [tex] \: [/tex][tex] \: [/tex]Detail Jawaban :Grade : SMAKode Kategorisasi : 10.2.6Kelas : 10Kode Mapel : 2Pelajaran : MatematikaBab : 6Sub Bab : Bab 6 – Trigonometri Dasar[tex] \: [/tex]Kata Kunci : Trigonometri dasar, sin, cos, tan.nilai dari Sin 30° x cos 45° + sin 90° x sin 45° adalah [tex]\bf{\frac{3}{4}\sqrt{2}}[/tex][tex] \: [/tex]TrigonometriPendahuluanA.) Definisi	.) Perbandingan TrigonometriPada segitiga siku-siku ABC, berlaku : *Gambar ke-1[tex]\small\mathbf{\left(a.\right)\ \ \sin\alpha=\frac{y}{r}=\frac{de}{mi}} [/tex][tex]\small\mathbf{\left(b.\right)\ \ \cos\alpha=\frac{x}{r}=\frac{sa}{mi}} [/tex][tex]\small\mathbf{\left(c.\right)\ \ \tan\alpha=\frac{y}{x}=\frac{de}{sa}} [/tex][tex]\small\mathbf{\left(d.\right)\ \ \csc\alpha=\frac{1}{\sin\alpha}=\frac{r}{y}}[/tex][tex]\small\mathbf{\left(e.\right)\ \ \sec\alpha=\frac{1}{\cos\alpha}=\frac{r}{x}}[/tex][tex]\small\mathbf{\left(f.\right)\ \ \cot\alpha=\frac{1}{\tan\alpha}=\frac{y}{x}}[/tex]B.) Sudut dan Kuadran1.) Pembagian Daerah [tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{absis(x)}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{Ordinat(y)}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\end{array}}[/tex]2.) Tanda-tanda Fungsi[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{sin}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\\&&&\\\mathbf{cos}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{tan}&\mathbf{+}&\mathbf{-}&\mathbf{+}&\mathbf{-}\end{array}}[/tex]3.) Sudut-sudut Istimewa[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{0^{\circ}}}&\underline{\mathbf{30^{\circ}}}&\underline{\mathbf{45^{\circ}}}&\underline{\mathbf{60^{\circ}}}\\&&&\\\mathbf{sin}&\mathbf{0}&\mathbf{\frac{1}{2}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}\sqrt{3}}\\&&&\\\mathbf{cos}&\mathbf{1}&\mathbf{\frac{1}{2}\sqrt{3}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}}\\&&&\\\mathbf{tan}&\mathbf{0}&\mathbf{\frac{1}{3}\sqrt{3}}&\mathbf{1}&\mathbf{\sqrt{3}}\end{array}} [/tex] [tex] \boxed{\begin{array}{c}\underline{\mathbf{90^{\circ}}}\\\\\mathbf{1}\\\\\mathbf{0}\\\\\infty\end{array}} [/tex]4.) Sudut Berelasia.   Kalau kita gunakan (90°± ...) atau (270°± ...)     1.) Fungsi berubah [tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-cos}\\\\\mathbf{cos}&\mathbf{+/-sin}\\\\\mathbf{tan}&\mathbf{+/-cot}\end{array}}[/tex]     2.)  Tanda +/- mengikuti kuadranb.   kalau kita gunakan (180°± ...) atau (360°− ...)     1.) Fungsi tetap[tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-sin}\\\\\mathbf{cos}&\mathbf{+/-cos}\\\\\mathbf{tan}&\mathbf{+/-tan}\end{array}}[/tex]C.) Dalil Segitiga1.) Aturan Sinus*gambar ke-2[tex]\small\mathbf{\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}}[/tex]2.) Aturan Cosinusa. a² = b² + c² - 2bc cos A atau	[tex]\small\mathbf{cos A=\frac{b^{2}+c^{2}-a^{2}}{2bc}}[/tex]b. b² = a² + c² - 2ac cos B atau	[tex]\small\mathbf{cos B=\frac{a^{2}+c^{2}-b^{2}}{2ac}}[/tex]c. c² = a² + b² - 2ab cos C atau	[tex]\small\mathbf{cos C=\frac{a^{2}+b^{2}-c^{2}}{2ab}}[/tex][tex] \: [/tex][tex] \: [/tex]PembahasanDiketahui :[tex]\bf{\sin\left(30^{\circ}\right)\times\cos\left(45^{\circ}\right)+\sin\left(90^{\circ}\right)\times\sin\left(45^{\circ}\right)}[/tex]Ditanya :berapa nilai tersebut?Jawaban :[tex]\bf{\sin\left(30^{\circ}\right)\times\cos\left(45^{\circ}\right)+\sin\left(90^{\circ}\right)\times\sin\left(45^{\circ}\right)}[/tex][tex]\bf{=\frac{1}{2}\times\frac{1}{2}\sqrt{2}+1\times\frac{1}{2}\sqrt{2}}[/tex][tex]\bf{=\frac{1}{4}\sqrt{2}+\frac{1}{2}\sqrt{2}}[/tex][tex]\bf{=\frac{1}{4}\sqrt{2}+\frac{2}{4}\sqrt{2}}[/tex][tex]\boxed{\bf{=\frac{3}{4}\sqrt{2}}}[/tex][tex] \: [/tex][tex] \: [/tex]Pelajari Lebih Lanjut :Contoh soal mencari sisi samping : https://brainly.co.id/tugas/48680192Nilai dari cos²45° + sin²240° = : https://brainly.co.id/tugas/52094991Jika cos (72,24°) = 1/5. maka sin (17,76°) ialah : https://brainly.co.id/tugas/52659460Berapakah sin(30°) × cos(60°) : https://brainly.co.id/tugas/52206983Jika A+B = 30°, maka Cos A ialah : https://brainly.co.id/tugas/52680527 [tex] \: [/tex][tex] \: [/tex]Detail Jawaban :Grade : SMAKode Kategorisasi : 10.2.6Kelas : 10Kode Mapel : 2Pelajaran : MatematikaBab : 6Sub Bab : Bab 6 – Trigonometri Dasar[tex] \: [/tex]Kata Kunci : Trigonometri dasar, sin, cos, tan.nilai dari Sin 30° x cos 45° + sin 90° x sin 45° adalah [tex]\bf{\frac{3}{4}\sqrt{2}}[/tex][tex] \: [/tex]TrigonometriPendahuluanA.) Definisi	.) Perbandingan TrigonometriPada segitiga siku-siku ABC, berlaku : *Gambar ke-1[tex]\small\mathbf{\left(a.\right)\ \ \sin\alpha=\frac{y}{r}=\frac{de}{mi}} [/tex][tex]\small\mathbf{\left(b.\right)\ \ \cos\alpha=\frac{x}{r}=\frac{sa}{mi}} [/tex][tex]\small\mathbf{\left(c.\right)\ \ \tan\alpha=\frac{y}{x}=\frac{de}{sa}} [/tex][tex]\small\mathbf{\left(d.\right)\ \ \csc\alpha=\frac{1}{\sin\alpha}=\frac{r}{y}}[/tex][tex]\small\mathbf{\left(e.\right)\ \ \sec\alpha=\frac{1}{\cos\alpha}=\frac{r}{x}}[/tex][tex]\small\mathbf{\left(f.\right)\ \ \cot\alpha=\frac{1}{\tan\alpha}=\frac{y}{x}}[/tex]B.) Sudut dan Kuadran1.) Pembagian Daerah [tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{absis(x)}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{Ordinat(y)}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\end{array}}[/tex]2.) Tanda-tanda Fungsi[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{sin}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\\&&&\\\mathbf{cos}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{tan}&\mathbf{+}&\mathbf{-}&\mathbf{+}&\mathbf{-}\end{array}}[/tex]3.) Sudut-sudut Istimewa[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{0^{\circ}}}&\underline{\mathbf{30^{\circ}}}&\underline{\mathbf{45^{\circ}}}&\underline{\mathbf{60^{\circ}}}\\&&&\\\mathbf{sin}&\mathbf{0}&\mathbf{\frac{1}{2}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}\sqrt{3}}\\&&&\\\mathbf{cos}&\mathbf{1}&\mathbf{\frac{1}{2}\sqrt{3}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}}\\&&&\\\mathbf{tan}&\mathbf{0}&\mathbf{\frac{1}{3}\sqrt{3}}&\mathbf{1}&\mathbf{\sqrt{3}}\end{array}} [/tex] [tex] \boxed{\begin{array}{c}\underline{\mathbf{90^{\circ}}}\\\\\mathbf{1}\\\\\mathbf{0}\\\\\infty\end{array}} [/tex]4.) Sudut Berelasia.   Kalau kita gunakan (90°± ...) atau (270°± ...)     1.) Fungsi berubah [tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-cos}\\\\\mathbf{cos}&\mathbf{+/-sin}\\\\\mathbf{tan}&\mathbf{+/-cot}\end{array}}[/tex]     2.)  Tanda +/- mengikuti kuadranb.   kalau kita gunakan (180°± ...) atau (360°− ...)     1.) Fungsi tetap[tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-sin}\\\\\mathbf{cos}&\mathbf{+/-cos}\\\\\mathbf{tan}&\mathbf{+/-tan}\end{array}}[/tex]C.) Dalil Segitiga1.) Aturan Sinus*gambar ke-2[tex]\small\mathbf{\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}}[/tex]2.) Aturan Cosinusa. a² = b² + c² - 2bc cos A atau	[tex]\small\mathbf{cos A=\frac{b^{2}+c^{2}-a^{2}}{2bc}}[/tex]b. b² = a² + c² - 2ac cos B atau	[tex]\small\mathbf{cos B=\frac{a^{2}+c^{2}-b^{2}}{2ac}}[/tex]c. c² = a² + b² - 2ab cos C atau	[tex]\small\mathbf{cos C=\frac{a^{2}+b^{2}-c^{2}}{2ab}}[/tex][tex] \: [/tex][tex] \: [/tex]PembahasanDiketahui :[tex]\bf{\sin\left(30^{\circ}\right)\times\cos\left(45^{\circ}\right)+\sin\left(90^{\circ}\right)\times\sin\left(45^{\circ}\right)}[/tex]Ditanya :berapa nilai tersebut?Jawaban :[tex]\bf{\sin\left(30^{\circ}\right)\times\cos\left(45^{\circ}\right)+\sin\left(90^{\circ}\right)\times\sin\left(45^{\circ}\right)}[/tex][tex]\bf{=\frac{1}{2}\times\frac{1}{2}\sqrt{2}+1\times\frac{1}{2}\sqrt{2}}[/tex][tex]\bf{=\frac{1}{4}\sqrt{2}+\frac{1}{2}\sqrt{2}}[/tex][tex]\bf{=\frac{1}{4}\sqrt{2}+\frac{2}{4}\sqrt{2}}[/tex][tex]\boxed{\bf{=\frac{3}{4}\sqrt{2}}}[/tex][tex] \: [/tex][tex] \: [/tex]Pelajari Lebih Lanjut :Contoh soal mencari sisi samping : https://brainly.co.id/tugas/48680192Nilai dari cos²45° + sin²240° = : https://brainly.co.id/tugas/52094991Jika cos (72,24°) = 1/5. maka sin (17,76°) ialah : https://brainly.co.id/tugas/52659460Berapakah sin(30°) × cos(60°) : https://brainly.co.id/tugas/52206983Jika A+B = 30°, maka Cos A ialah : https://brainly.co.id/tugas/52680527 [tex] \: [/tex][tex] \: [/tex]Detail Jawaban :Grade : SMAKode Kategorisasi : 10.2.6Kelas : 10Kode Mapel : 2Pelajaran : MatematikaBab : 6Sub Bab : Bab 6 – Trigonometri Dasar[tex] \: [/tex]Kata Kunci : Trigonometri dasar, sin, cos, tan.nilai dari Sin 30° x cos 45° + sin 90° x sin 45° adalah [tex]\bf{\frac{3}{4}\sqrt{2}}[/tex][tex] \: [/tex]TrigonometriPendahuluanA.) Definisi	.) Perbandingan TrigonometriPada segitiga siku-siku ABC, berlaku : *Gambar ke-1[tex]\small\mathbf{\left(a.\right)\ \ \sin\alpha=\frac{y}{r}=\frac{de}{mi}} [/tex][tex]\small\mathbf{\left(b.\right)\ \ \cos\alpha=\frac{x}{r}=\frac{sa}{mi}} [/tex][tex]\small\mathbf{\left(c.\right)\ \ \tan\alpha=\frac{y}{x}=\frac{de}{sa}} [/tex][tex]\small\mathbf{\left(d.\right)\ \ \csc\alpha=\frac{1}{\sin\alpha}=\frac{r}{y}}[/tex][tex]\small\mathbf{\left(e.\right)\ \ \sec\alpha=\frac{1}{\cos\alpha}=\frac{r}{x}}[/tex][tex]\small\mathbf{\left(f.\right)\ \ \cot\alpha=\frac{1}{\tan\alpha}=\frac{y}{x}}[/tex]B.) Sudut dan Kuadran1.) Pembagian Daerah [tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{absis(x)}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{Ordinat(y)}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\end{array}}[/tex]2.) Tanda-tanda Fungsi[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{sin}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\\&&&\\\mathbf{cos}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{tan}&\mathbf{+}&\mathbf{-}&\mathbf{+}&\mathbf{-}\end{array}}[/tex]3.) Sudut-sudut Istimewa[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{0^{\circ}}}&\underline{\mathbf{30^{\circ}}}&\underline{\mathbf{45^{\circ}}}&\underline{\mathbf{60^{\circ}}}\\&&&\\\mathbf{sin}&\mathbf{0}&\mathbf{\frac{1}{2}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}\sqrt{3}}\\&&&\\\mathbf{cos}&\mathbf{1}&\mathbf{\frac{1}{2}\sqrt{3}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}}\\&&&\\\mathbf{tan}&\mathbf{0}&\mathbf{\frac{1}{3}\sqrt{3}}&\mathbf{1}&\mathbf{\sqrt{3}}\end{array}} [/tex] [tex] \boxed{\begin{array}{c}\underline{\mathbf{90^{\circ}}}\\\\\mathbf{1}\\\\\mathbf{0}\\\\\infty\end{array}} [/tex]4.) Sudut Berelasia.   Kalau kita gunakan (90°± ...) atau (270°± ...)     1.) Fungsi berubah [tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-cos}\\\\\mathbf{cos}&\mathbf{+/-sin}\\\\\mathbf{tan}&\mathbf{+/-cot}\end{array}}[/tex]     2.)  Tanda +/- mengikuti kuadranb.   kalau kita gunakan (180°± ...) atau (360°− ...)     1.) Fungsi tetap[tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-sin}\\\\\mathbf{cos}&\mathbf{+/-cos}\\\\\mathbf{tan}&\mathbf{+/-tan}\end{array}}[/tex]C.) Dalil Segitiga1.) Aturan Sinus*gambar ke-2[tex]\small\mathbf{\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}}[/tex]2.) Aturan Cosinusa. a² = b² + c² - 2bc cos A atau	[tex]\small\mathbf{cos A=\frac{b^{2}+c^{2}-a^{2}}{2bc}}[/tex]b. b² = a² + c² - 2ac cos B atau	[tex]\small\mathbf{cos B=\frac{a^{2}+c^{2}-b^{2}}{2ac}}[/tex]c. c² = a² + b² - 2ab cos C atau	[tex]\small\mathbf{cos C=\frac{a^{2}+b^{2}-c^{2}}{2ab}}[/tex][tex] \: [/tex][tex] \: [/tex]PembahasanDiketahui :[tex]\bf{\sin\left(30^{\circ}\right)\times\cos\left(45^{\circ}\right)+\sin\left(90^{\circ}\right)\times\sin\left(45^{\circ}\right)}[/tex]Ditanya :berapa nilai tersebut?Jawaban :[tex]\bf{\sin\left(30^{\circ}\right)\times\cos\left(45^{\circ}\right)+\sin\left(90^{\circ}\right)\times\sin\left(45^{\circ}\right)}[/tex][tex]\bf{=\frac{1}{2}\times\frac{1}{2}\sqrt{2}+1\times\frac{1}{2}\sqrt{2}}[/tex][tex]\bf{=\frac{1}{4}\sqrt{2}+\frac{1}{2}\sqrt{2}}[/tex][tex]\bf{=\frac{1}{4}\sqrt{2}+\frac{2}{4}\sqrt{2}}[/tex][tex]\boxed{\bf{=\frac{3}{4}\sqrt{2}}}[/tex][tex] \: [/tex][tex] \: [/tex]Pelajari Lebih Lanjut :Contoh soal mencari sisi samping : https://brainly.co.id/tugas/48680192Nilai dari cos²45° + sin²240° = : https://brainly.co.id/tugas/52094991Jika cos (72,24°) = 1/5. maka sin (17,76°) ialah : https://brainly.co.id/tugas/52659460Berapakah sin(30°) × cos(60°) : https://brainly.co.id/tugas/52206983Jika A+B = 30°, maka Cos A ialah : https://brainly.co.id/tugas/52680527 [tex] \: [/tex][tex] \: [/tex]Detail Jawaban :Grade : SMAKode Kategorisasi : 10.2.6Kelas : 10Kode Mapel : 2Pelajaran : MatematikaBab : 6Sub Bab : Bab 6 – Trigonometri Dasar[tex] \: [/tex]Kata Kunci : Trigonometri dasar, sin, cos, tan.

Semoga dengan pertanyaan yang sudah terjawab oleh Sinogen dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Tue, 28 Feb 23