Tentukan turunan pertama fungsi f(x) = (3x - 2)⁵ (x²

Berikut ini adalah pertanyaan dari peesbedrf pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Tentukan turunan pertama fungsi f(x) = (3x - 2)⁵ (x² - 3x + 2)³
Tentukan turunan pertama fungsi f(x) = (3x - 2)⁵ (x² - 3x + 2)³

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Turunan pertamadari fungsif(x) = (3x - 2)⁵ (x² - 3x + 2)³ adalah:

\begin{aligned}&\textsf{Alternatif 1:}\\&\boxed{f'(x)=3\left(3x-2\right)^4\left(x^2-3x+2\right)^2\left(11x^2-28x+16\right)}\end{aligned}

\begin{aligned}&\textsf{Alternatif 2:}\\&\boxed{f'(x)=3\left(3x^2-5x+2\right)^2\left(3x^2-8x+4\right)^2\left(11x^2-28x+16\right)}\end{aligned}

\begin{aligned}&\textsf{Alternatif 3:}\\&\boxed{f'(x)=3\left[\left(3x^2-5x+2\right)\left(3x^2-8x+4\right)\right]^2\left(11x^2-28x+16\right)}\end{aligned}

Ketiga alternatif tersebut saling ekuivalen.
Alternatif lain: dengan menjabarkan seperti jawaban pertama.

Penjelasan

Turunan

Diberikan fungsi:
f(x)=(3x-2)^5(x^2-3x+2)^3

Turunan pertamanya adalah:

\begin{aligned}f'(x)&=\left[\left(3x-2\right)^5\right]'\left(x^2-3x+2\right)^3\\&\quad{}+\left(3x-2\right)^5\left[\left(x^2-3x+2\right)^3\right]'\\&\qquad{\sf Ingat:\ }\left(u^n\right)'=nu^{n-1}u'\\&=5\left(3x-2\right)^4\left(3x-2\right)'\left(x^2-3x+2\right)^3\\&\quad{}+\left(3x-2\right)^5\cdot3\left(x^2-3x+2\right)^2\left(x^2-3x+2\right)'\\&=15\left(3x-2\right)^4\left(x^2-3x+2\right)^3\\&\quad{}+3\left(3x-2\right)^5\left(2x-3\right)\left(x^2-3x+2\right)^2\end{aligned}
\begin{aligned}&=3\left(3x-2\right)^4\left(x^2-3x+2\right)^2\left[5\left(x^2-3x+2\right)+\left(3x-2\right)\left(2x-3\right)\right]\\&=3\left(3x-2\right)^4\left(x^2-3x+2\right)^2\left(5x^2-15x+10+6x^2-13x+6\right)\\f'(x)&=\boxed{3\left(3x-2\right)^4\left(x^2-3x+2\right)^2\left(11x^2-28x+16\right)}\\&=3\left(3x-2\right)^4\left(x-1\right)^2\left(x-2\right)^2\left(11x^2-28x+16\right)\end{aligned}
\begin{aligned}&=3\left[\left(3x-2\right)\left(x-1\right)\right]^2\left[\left(3x-2\right)\left(x-2\right)\right]^2\left(11x^2-28x+16\right)\\f'(x)&=\boxed{3\left(3x^2-5x+2\right)^2\left(3x^2-8x+4\right)^2\left(11x^2-28x+16\right)}\\f'(x)&=\boxed{3\left[\left(3x^2-5x+2\right)\left(3x^2-8x+4\right)\right]^2\left(11x^2-28x+16\right)}\end{aligned}


\overline{\begin{array}{l}\small\textsf{Duc In Altum}\\\small\text{bertolaklah\;ke\;tempat}\\\small\text{yang\;lebih\;dalam}\end{array}}

Turunan pertama dari fungsi f(x) = (3x - 2)⁵ (x² - 3x + 2)³ adalah:[tex]\begin{aligned}&\textsf{Alternatif 1:}\\&\boxed{f'(x)=3\left(3x-2\right)^4\left(x^2-3x+2\right)^2\left(11x^2-28x+16\right)}\end{aligned}[/tex][tex]\begin{aligned}&\textsf{Alternatif 2:}\\&\boxed{f'(x)=3\left(3x^2-5x+2\right)^2\left(3x^2-8x+4\right)^2\left(11x^2-28x+16\right)}\end{aligned}[/tex][tex]\begin{aligned}&\textsf{Alternatif 3:}\\&\boxed{f'(x)=3\left[\left(3x^2-5x+2\right)\left(3x^2-8x+4\right)\right]^2\left(11x^2-28x+16\right)}\end{aligned}[/tex]Ketiga alternatif tersebut saling ekuivalen. Alternatif lain: dengan menjabarkan seperti jawaban pertama. PenjelasanTurunanDiberikan fungsi:[tex]f(x)=(3x-2)^5(x^2-3x+2)^3[/tex]Turunan pertamanya adalah:[tex]\begin{aligned}f'(x)&=\left[\left(3x-2\right)^5\right]'\left(x^2-3x+2\right)^3\\&\quad{}+\left(3x-2\right)^5\left[\left(x^2-3x+2\right)^3\right]'\\&\qquad{\sf Ingat:\ }\left(u^n\right)'=nu^{n-1}u'\\&=5\left(3x-2\right)^4\left(3x-2\right)'\left(x^2-3x+2\right)^3\\&\quad{}+\left(3x-2\right)^5\cdot3\left(x^2-3x+2\right)^2\left(x^2-3x+2\right)'\\&=15\left(3x-2\right)^4\left(x^2-3x+2\right)^3\\&\quad{}+3\left(3x-2\right)^5\left(2x-3\right)\left(x^2-3x+2\right)^2\end{aligned}[/tex][tex]\begin{aligned}&=3\left(3x-2\right)^4\left(x^2-3x+2\right)^2\left[5\left(x^2-3x+2\right)+\left(3x-2\right)\left(2x-3\right)\right]\\&=3\left(3x-2\right)^4\left(x^2-3x+2\right)^2\left(5x^2-15x+10+6x^2-13x+6\right)\\f'(x)&=\boxed{3\left(3x-2\right)^4\left(x^2-3x+2\right)^2\left(11x^2-28x+16\right)}\\&=3\left(3x-2\right)^4\left(x-1\right)^2\left(x-2\right)^2\left(11x^2-28x+16\right)\end{aligned}[/tex][tex]\begin{aligned}&=3\left[\left(3x-2\right)\left(x-1\right)\right]^2\left[\left(3x-2\right)\left(x-2\right)\right]^2\left(11x^2-28x+16\right)\\f'(x)&=\boxed{3\left(3x^2-5x+2\right)^2\left(3x^2-8x+4\right)^2\left(11x^2-28x+16\right)}\\f'(x)&=\boxed{3\left[\left(3x^2-5x+2\right)\left(3x^2-8x+4\right)\right]^2\left(11x^2-28x+16\right)}\end{aligned}[/tex]  [tex]\overline{\begin{array}{l}\small\textsf{Duc In Altum}\\\small\text{bertolaklah\;ke\;tempat}\\\small\text{yang\;lebih\;dalam}\end{array}}[/tex]Turunan pertama dari fungsi f(x) = (3x - 2)⁵ (x² - 3x + 2)³ adalah:[tex]\begin{aligned}&\textsf{Alternatif 1:}\\&\boxed{f'(x)=3\left(3x-2\right)^4\left(x^2-3x+2\right)^2\left(11x^2-28x+16\right)}\end{aligned}[/tex][tex]\begin{aligned}&\textsf{Alternatif 2:}\\&\boxed{f'(x)=3\left(3x^2-5x+2\right)^2\left(3x^2-8x+4\right)^2\left(11x^2-28x+16\right)}\end{aligned}[/tex][tex]\begin{aligned}&\textsf{Alternatif 3:}\\&\boxed{f'(x)=3\left[\left(3x^2-5x+2\right)\left(3x^2-8x+4\right)\right]^2\left(11x^2-28x+16\right)}\end{aligned}[/tex]Ketiga alternatif tersebut saling ekuivalen. Alternatif lain: dengan menjabarkan seperti jawaban pertama. PenjelasanTurunanDiberikan fungsi:[tex]f(x)=(3x-2)^5(x^2-3x+2)^3[/tex]Turunan pertamanya adalah:[tex]\begin{aligned}f'(x)&=\left[\left(3x-2\right)^5\right]'\left(x^2-3x+2\right)^3\\&\quad{}+\left(3x-2\right)^5\left[\left(x^2-3x+2\right)^3\right]'\\&\qquad{\sf Ingat:\ }\left(u^n\right)'=nu^{n-1}u'\\&=5\left(3x-2\right)^4\left(3x-2\right)'\left(x^2-3x+2\right)^3\\&\quad{}+\left(3x-2\right)^5\cdot3\left(x^2-3x+2\right)^2\left(x^2-3x+2\right)'\\&=15\left(3x-2\right)^4\left(x^2-3x+2\right)^3\\&\quad{}+3\left(3x-2\right)^5\left(2x-3\right)\left(x^2-3x+2\right)^2\end{aligned}[/tex][tex]\begin{aligned}&=3\left(3x-2\right)^4\left(x^2-3x+2\right)^2\left[5\left(x^2-3x+2\right)+\left(3x-2\right)\left(2x-3\right)\right]\\&=3\left(3x-2\right)^4\left(x^2-3x+2\right)^2\left(5x^2-15x+10+6x^2-13x+6\right)\\f'(x)&=\boxed{3\left(3x-2\right)^4\left(x^2-3x+2\right)^2\left(11x^2-28x+16\right)}\\&=3\left(3x-2\right)^4\left(x-1\right)^2\left(x-2\right)^2\left(11x^2-28x+16\right)\end{aligned}[/tex][tex]\begin{aligned}&=3\left[\left(3x-2\right)\left(x-1\right)\right]^2\left[\left(3x-2\right)\left(x-2\right)\right]^2\left(11x^2-28x+16\right)\\f'(x)&=\boxed{3\left(3x^2-5x+2\right)^2\left(3x^2-8x+4\right)^2\left(11x^2-28x+16\right)}\\f'(x)&=\boxed{3\left[\left(3x^2-5x+2\right)\left(3x^2-8x+4\right)\right]^2\left(11x^2-28x+16\right)}\end{aligned}[/tex]  [tex]\overline{\begin{array}{l}\small\textsf{Duc In Altum}\\\small\text{bertolaklah\;ke\;tempat}\\\small\text{yang\;lebih\;dalam}\end{array}}[/tex]Turunan pertama dari fungsi f(x) = (3x - 2)⁵ (x² - 3x + 2)³ adalah:[tex]\begin{aligned}&\textsf{Alternatif 1:}\\&\boxed{f'(x)=3\left(3x-2\right)^4\left(x^2-3x+2\right)^2\left(11x^2-28x+16\right)}\end{aligned}[/tex][tex]\begin{aligned}&\textsf{Alternatif 2:}\\&\boxed{f'(x)=3\left(3x^2-5x+2\right)^2\left(3x^2-8x+4\right)^2\left(11x^2-28x+16\right)}\end{aligned}[/tex][tex]\begin{aligned}&\textsf{Alternatif 3:}\\&\boxed{f'(x)=3\left[\left(3x^2-5x+2\right)\left(3x^2-8x+4\right)\right]^2\left(11x^2-28x+16\right)}\end{aligned}[/tex]Ketiga alternatif tersebut saling ekuivalen. Alternatif lain: dengan menjabarkan seperti jawaban pertama. PenjelasanTurunanDiberikan fungsi:[tex]f(x)=(3x-2)^5(x^2-3x+2)^3[/tex]Turunan pertamanya adalah:[tex]\begin{aligned}f'(x)&=\left[\left(3x-2\right)^5\right]'\left(x^2-3x+2\right)^3\\&\quad{}+\left(3x-2\right)^5\left[\left(x^2-3x+2\right)^3\right]'\\&\qquad{\sf Ingat:\ }\left(u^n\right)'=nu^{n-1}u'\\&=5\left(3x-2\right)^4\left(3x-2\right)'\left(x^2-3x+2\right)^3\\&\quad{}+\left(3x-2\right)^5\cdot3\left(x^2-3x+2\right)^2\left(x^2-3x+2\right)'\\&=15\left(3x-2\right)^4\left(x^2-3x+2\right)^3\\&\quad{}+3\left(3x-2\right)^5\left(2x-3\right)\left(x^2-3x+2\right)^2\end{aligned}[/tex][tex]\begin{aligned}&=3\left(3x-2\right)^4\left(x^2-3x+2\right)^2\left[5\left(x^2-3x+2\right)+\left(3x-2\right)\left(2x-3\right)\right]\\&=3\left(3x-2\right)^4\left(x^2-3x+2\right)^2\left(5x^2-15x+10+6x^2-13x+6\right)\\f'(x)&=\boxed{3\left(3x-2\right)^4\left(x^2-3x+2\right)^2\left(11x^2-28x+16\right)}\\&=3\left(3x-2\right)^4\left(x-1\right)^2\left(x-2\right)^2\left(11x^2-28x+16\right)\end{aligned}[/tex][tex]\begin{aligned}&=3\left[\left(3x-2\right)\left(x-1\right)\right]^2\left[\left(3x-2\right)\left(x-2\right)\right]^2\left(11x^2-28x+16\right)\\f'(x)&=\boxed{3\left(3x^2-5x+2\right)^2\left(3x^2-8x+4\right)^2\left(11x^2-28x+16\right)}\\f'(x)&=\boxed{3\left[\left(3x^2-5x+2\right)\left(3x^2-8x+4\right)\right]^2\left(11x^2-28x+16\right)}\end{aligned}[/tex]  [tex]\overline{\begin{array}{l}\small\textsf{Duc In Altum}\\\small\text{bertolaklah\;ke\;tempat}\\\small\text{yang\;lebih\;dalam}\end{array}}[/tex]

Semoga dengan pertanyaan yang sudah terjawab oleh DucInAltum dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Mon, 22 May 23