diketahui sin b = 1/2. tentukan cos b, cosec b,

Berikut ini adalah pertanyaan dari axxrizka pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Diketahui sin b = 1/2. tentukan cos b, cosec b, sec b, dan cot b​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

diketahui sin b = 1/2.

maka

\boxed{\bf{a.\ \cos\left(b\right)=\frac{1}{2}\sqrt{3}}}

\boxed{\bf{b. \ \csc\left(b\right)=2}}

\boxed{\bf{c. \ \sec\left(b\right)=\frac{2\sqrt{3}}{3}}}

\boxed{\bf{d. \ \cot\left(b\right)=\sqrt{3}}}

 \:

Trigonometri dasar

Pendahuluan

A.) Definisi

.) Perbandingan Trigonometri

Pada segitiga siku-siku ABC, berlaku :

*Gambar ke-1

\small\mathbf{\left(a.\right)\ \ \sin\alpha=\frac{y}{r}=\frac{de}{mi}}

\small\mathbf{\left(b.\right)\ \ \cos\alpha=\frac{x}{r}=\frac{sa}{mi}}

\small\mathbf{\left(c.\right)\ \ \tan\alpha=\frac{y}{x}=\frac{de}{sa}}

\small\mathbf{\left(d.\right)\ \ \csc\alpha=\frac{1}{\sin\alpha}=\frac{r}{y}}

\small\mathbf{\left(e.\right)\ \ \sec\alpha=\frac{1}{\cos\alpha}=\frac{r}{x}}

\small\mathbf{\left(f.\right)\ \ \cot\alpha=\frac{1}{\tan\alpha}=\frac{y}{x}}

B.) Sudut dan Kuadran

1.) Pembagian Daerah

\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{absis(x)}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{Ordinat(y)}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\end{array}}

2.) Tanda-tanda Fungsi

\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{sin}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\\&&&\\\mathbf{cos}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{tan}&\mathbf{+}&\mathbf{-}&\mathbf{+}&\mathbf{-}\end{array}}

3.) Sudut-sudut Istimewa

\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{0^{\circ}}}&\underline{\mathbf{30^{\circ}}}&\underline{\mathbf{45^{\circ}}}&\underline{\mathbf{60^{\circ}}}\\&&&\\\mathbf{sin}&\mathbf{0}&\mathbf{\frac{1}{2}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}\sqrt{3}}\\&&&\\\mathbf{cos}&\mathbf{1}&\mathbf{\frac{1}{2}\sqrt{3}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}}\\&&&\\\mathbf{tan}&\mathbf{0}&\mathbf{\frac{1}{3}\sqrt{3}}&\mathbf{1}&\mathbf{\sqrt{3}}\end{array}}  \boxed{\begin{array}{c}\underline{\mathbf{90^{\circ}}}\\\\\mathbf{1}\\\\\mathbf{0}\\\\\infty\end{array}}

4.) Sudut Berelasi

a.   Kalau kita gunakan (90°± ...) atau (270°± ...)

    1.) Fungsi berubah

\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-cos}\\\\\mathbf{cos}&\mathbf{+/-sin}\\\\\mathbf{tan}&\mathbf{+/-cot}\end{array}}

    2.)  Tanda +/- mengikuti kuadran

b.   kalau kita gunakan (180°± ...) atau (360°− ...)

    1.) Fungsi tetap

\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-sin}\\\\\mathbf{cos}&\mathbf{+/-cos}\\\\\mathbf{tan}&\mathbf{+/-tan}\end{array}}

 \:

 \:

Pembahasan

Diketahui :

\bf{\sin b=\frac{1}{2}}

Ditanya :

Maka nilai dari cos b, cosec b, sec b, dan cot b ialah...

Jawaban :

\to pertama kita lihat dulu yang diketahui

\bf{\sin b=\frac{1}{2}}

maka

\bf{\sin b=30^{\circ}}

\bf{\sin(30^{\circ})=\frac{1}{2}}

\to selanjutnya, kita lihat sudutnya sama-sama b (yang ditanya juga b).

maka,

\boxed{\bf{a.\ \cos(30^{\circ})=\frac{1}{2}\sqrt{3}}}

\boxed{\bf{\cos(b)=\frac{1}{2}\sqrt{3}}}

\to

\bf{b.\ \csc(30^\circ)=\frac{1}{\sin(30^\circ)}}

\bf{\csc(30^\circ)=\frac{1}{\frac{1}{2}}}

\boxed{\bf{\csc(30^\circ)=2}}

\boxed{\bf{\csc(b)=2}}

\to

\bf{c.\ \sec(30^\circ)=\frac{1}{\cos(30^\circ)}}

\bf{\sec(30^\circ)=\frac{1}{\frac{1}{2}\sqrt{3}}}

\bf{\sec(30^\circ)=\frac{2}{\sqrt{3}}\ \to\ rasionalkan}

\boxed{\bf{\sec(30^\circ)=\frac{2\sqrt{3}}{3}}}

\boxed{\bf{\sec(b)=\frac{2\sqrt{3}}{3}}}

\to

\bf{d.\ \cot(30^\circ)=\frac{1}{\tan(30^\circ)}}

\bf{\cot(30^\circ)=\frac{1}{\frac{\sin(30^\circ)}{\cos(30^\circ)}}}

\bf{\cot\left(30^\circ\right)=\frac{\cos\left(30^\circ\right)}{\sin\left(30^\circ\right)}}

\bf{\cot\left(30^\circ\right)=\frac{\frac{1}{2}\sqrt{3}}{\frac{1}{2}}}

\boxed{\bf{\cot\left(30^\circ\right)=\sqrt{3}}}

\boxed{\bf{\cot\left(b\right)=\sqrt{3}}}

 \:

 \:

Pelajari Lebih Lanjut :

 \:

 \:

Detail Jawaban :

Grade : SMA

Kode Kategorisasi : 10.2.6

Kelas : 10

Kode Mapel : 2

Pelajaran : Matematika

Bab : 6

Sub Bab : Bab 6 – Trigonometri Dasar

Kata Kunci : Trigonometri dasar.

diketahui sin b = 1/2.maka[tex]\boxed{\bf{a.\ \cos\left(b\right)=\frac{1}{2}\sqrt{3}}}[/tex][tex]\boxed{\bf{b. \ \csc\left(b\right)=2}}[/tex][tex]\boxed{\bf{c. \ \sec\left(b\right)=\frac{2\sqrt{3}}{3}}}[/tex][tex]\boxed{\bf{d. \ \cot\left(b\right)=\sqrt{3}}}[/tex][tex] \: [/tex]Trigonometri dasarPendahuluanA.) Definisi.) Perbandingan TrigonometriPada segitiga siku-siku ABC, berlaku : *Gambar ke-1[tex]\small\mathbf{\left(a.\right)\ \ \sin\alpha=\frac{y}{r}=\frac{de}{mi}} [/tex][tex]\small\mathbf{\left(b.\right)\ \ \cos\alpha=\frac{x}{r}=\frac{sa}{mi}} [/tex][tex]\small\mathbf{\left(c.\right)\ \ \tan\alpha=\frac{y}{x}=\frac{de}{sa}} [/tex][tex]\small\mathbf{\left(d.\right)\ \ \csc\alpha=\frac{1}{\sin\alpha}=\frac{r}{y}}[/tex][tex]\small\mathbf{\left(e.\right)\ \ \sec\alpha=\frac{1}{\cos\alpha}=\frac{r}{x}}[/tex][tex]\small\mathbf{\left(f.\right)\ \ \cot\alpha=\frac{1}{\tan\alpha}=\frac{y}{x}}[/tex]B.) Sudut dan Kuadran1.) Pembagian Daerah [tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{absis(x)}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{Ordinat(y)}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\end{array}}[/tex]2.) Tanda-tanda Fungsi[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{sin}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\\&&&\\\mathbf{cos}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{tan}&\mathbf{+}&\mathbf{-}&\mathbf{+}&\mathbf{-}\end{array}}[/tex]3.) Sudut-sudut Istimewa[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{0^{\circ}}}&\underline{\mathbf{30^{\circ}}}&\underline{\mathbf{45^{\circ}}}&\underline{\mathbf{60^{\circ}}}\\&&&\\\mathbf{sin}&\mathbf{0}&\mathbf{\frac{1}{2}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}\sqrt{3}}\\&&&\\\mathbf{cos}&\mathbf{1}&\mathbf{\frac{1}{2}\sqrt{3}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}}\\&&&\\\mathbf{tan}&\mathbf{0}&\mathbf{\frac{1}{3}\sqrt{3}}&\mathbf{1}&\mathbf{\sqrt{3}}\end{array}} [/tex] [tex] \boxed{\begin{array}{c}\underline{\mathbf{90^{\circ}}}\\\\\mathbf{1}\\\\\mathbf{0}\\\\\infty\end{array}} [/tex]4.) Sudut Berelasia.   Kalau kita gunakan (90°± ...) atau (270°± ...)     1.) Fungsi berubah [tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-cos}\\\\\mathbf{cos}&\mathbf{+/-sin}\\\\\mathbf{tan}&\mathbf{+/-cot}\end{array}}[/tex]     2.)  Tanda +/- mengikuti kuadranb.   kalau kita gunakan (180°± ...) atau (360°− ...)     1.) Fungsi tetap[tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-sin}\\\\\mathbf{cos}&\mathbf{+/-cos}\\\\\mathbf{tan}&\mathbf{+/-tan}\end{array}}[/tex][tex] \: [/tex][tex] \: [/tex]PembahasanDiketahui :[tex]\bf{\sin b=\frac{1}{2}}[/tex]Ditanya : Maka nilai dari cos b, cosec b, sec b, dan cot b ialah...Jawaban :[tex]\to[/tex] pertama kita lihat dulu yang diketahui[tex]\bf{\sin b=\frac{1}{2}}[/tex]maka[tex]\bf{\sin b=30^{\circ}}[/tex][tex]\bf{\sin(30^{\circ})=\frac{1}{2}}[/tex][tex]\to[/tex] selanjutnya, kita lihat sudutnya sama-sama b (yang ditanya juga b).maka,[tex]\boxed{\bf{a.\ \cos(30^{\circ})=\frac{1}{2}\sqrt{3}}}[/tex][tex]\boxed{\bf{\cos(b)=\frac{1}{2}\sqrt{3}}}[/tex][tex]\to[/tex][tex]\bf{b.\ \csc(30^\circ)=\frac{1}{\sin(30^\circ)}}[/tex][tex]\bf{\csc(30^\circ)=\frac{1}{\frac{1}{2}}}[/tex][tex]\boxed{\bf{\csc(30^\circ)=2}}[/tex][tex]\boxed{\bf{\csc(b)=2}}[/tex][tex]\to[/tex][tex]\bf{c.\ \sec(30^\circ)=\frac{1}{\cos(30^\circ)}}[/tex][tex]\bf{\sec(30^\circ)=\frac{1}{\frac{1}{2}\sqrt{3}}}[/tex][tex]\bf{\sec(30^\circ)=\frac{2}{\sqrt{3}}\ \to\ rasionalkan}[/tex][tex]\boxed{\bf{\sec(30^\circ)=\frac{2\sqrt{3}}{3}}}[/tex][tex]\boxed{\bf{\sec(b)=\frac{2\sqrt{3}}{3}}}[/tex][tex]\to[/tex][tex]\bf{d.\ \cot(30^\circ)=\frac{1}{\tan(30^\circ)}}[/tex][tex]\bf{\cot(30^\circ)=\frac{1}{\frac{\sin(30^\circ)}{\cos(30^\circ)}}}[/tex][tex]\bf{\cot\left(30^\circ\right)=\frac{\cos\left(30^\circ\right)}{\sin\left(30^\circ\right)}}[/tex][tex]\bf{\cot\left(30^\circ\right)=\frac{\frac{1}{2}\sqrt{3}}{\frac{1}{2}}}[/tex][tex]\boxed{\bf{\cot\left(30^\circ\right)=\sqrt{3}}}[/tex][tex]\boxed{\bf{\cot\left(b\right)=\sqrt{3}}}[/tex][tex] \: [/tex][tex] \: [/tex]Pelajari Lebih Lanjut :Contoh soal mencari sisi samping : https://brainly.co.id/tugas/48680192Contoh soal dan penyelesaian trigonometri : https://brainly.co.id/tugas/14823036Contoh soal yang serupa 1 : https://brainly.co.id/tugas/9349166Contoh soal yang serupa 2 : https://brainly.co.id/tugas/14975792Mencari cos a jika diketahui sin a : https://brainly.co.id/tugas/14652547[tex] \: [/tex][tex] \: [/tex]Detail Jawaban :Grade : SMAKode Kategorisasi : 10.2.6Kelas : 10Kode Mapel : 2Pelajaran : MatematikaBab : 6Sub Bab : Bab 6 – Trigonometri DasarKata Kunci : Trigonometri dasar.diketahui sin b = 1/2.maka[tex]\boxed{\bf{a.\ \cos\left(b\right)=\frac{1}{2}\sqrt{3}}}[/tex][tex]\boxed{\bf{b. \ \csc\left(b\right)=2}}[/tex][tex]\boxed{\bf{c. \ \sec\left(b\right)=\frac{2\sqrt{3}}{3}}}[/tex][tex]\boxed{\bf{d. \ \cot\left(b\right)=\sqrt{3}}}[/tex][tex] \: [/tex]Trigonometri dasarPendahuluanA.) Definisi.) Perbandingan TrigonometriPada segitiga siku-siku ABC, berlaku : *Gambar ke-1[tex]\small\mathbf{\left(a.\right)\ \ \sin\alpha=\frac{y}{r}=\frac{de}{mi}} [/tex][tex]\small\mathbf{\left(b.\right)\ \ \cos\alpha=\frac{x}{r}=\frac{sa}{mi}} [/tex][tex]\small\mathbf{\left(c.\right)\ \ \tan\alpha=\frac{y}{x}=\frac{de}{sa}} [/tex][tex]\small\mathbf{\left(d.\right)\ \ \csc\alpha=\frac{1}{\sin\alpha}=\frac{r}{y}}[/tex][tex]\small\mathbf{\left(e.\right)\ \ \sec\alpha=\frac{1}{\cos\alpha}=\frac{r}{x}}[/tex][tex]\small\mathbf{\left(f.\right)\ \ \cot\alpha=\frac{1}{\tan\alpha}=\frac{y}{x}}[/tex]B.) Sudut dan Kuadran1.) Pembagian Daerah [tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{absis(x)}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{Ordinat(y)}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\end{array}}[/tex]2.) Tanda-tanda Fungsi[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{sin}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\\&&&\\\mathbf{cos}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{tan}&\mathbf{+}&\mathbf{-}&\mathbf{+}&\mathbf{-}\end{array}}[/tex]3.) Sudut-sudut Istimewa[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{0^{\circ}}}&\underline{\mathbf{30^{\circ}}}&\underline{\mathbf{45^{\circ}}}&\underline{\mathbf{60^{\circ}}}\\&&&\\\mathbf{sin}&\mathbf{0}&\mathbf{\frac{1}{2}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}\sqrt{3}}\\&&&\\\mathbf{cos}&\mathbf{1}&\mathbf{\frac{1}{2}\sqrt{3}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}}\\&&&\\\mathbf{tan}&\mathbf{0}&\mathbf{\frac{1}{3}\sqrt{3}}&\mathbf{1}&\mathbf{\sqrt{3}}\end{array}} [/tex] [tex] \boxed{\begin{array}{c}\underline{\mathbf{90^{\circ}}}\\\\\mathbf{1}\\\\\mathbf{0}\\\\\infty\end{array}} [/tex]4.) Sudut Berelasia.   Kalau kita gunakan (90°± ...) atau (270°± ...)     1.) Fungsi berubah [tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-cos}\\\\\mathbf{cos}&\mathbf{+/-sin}\\\\\mathbf{tan}&\mathbf{+/-cot}\end{array}}[/tex]     2.)  Tanda +/- mengikuti kuadranb.   kalau kita gunakan (180°± ...) atau (360°− ...)     1.) Fungsi tetap[tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-sin}\\\\\mathbf{cos}&\mathbf{+/-cos}\\\\\mathbf{tan}&\mathbf{+/-tan}\end{array}}[/tex][tex] \: [/tex][tex] \: [/tex]PembahasanDiketahui :[tex]\bf{\sin b=\frac{1}{2}}[/tex]Ditanya : Maka nilai dari cos b, cosec b, sec b, dan cot b ialah...Jawaban :[tex]\to[/tex] pertama kita lihat dulu yang diketahui[tex]\bf{\sin b=\frac{1}{2}}[/tex]maka[tex]\bf{\sin b=30^{\circ}}[/tex][tex]\bf{\sin(30^{\circ})=\frac{1}{2}}[/tex][tex]\to[/tex] selanjutnya, kita lihat sudutnya sama-sama b (yang ditanya juga b).maka,[tex]\boxed{\bf{a.\ \cos(30^{\circ})=\frac{1}{2}\sqrt{3}}}[/tex][tex]\boxed{\bf{\cos(b)=\frac{1}{2}\sqrt{3}}}[/tex][tex]\to[/tex][tex]\bf{b.\ \csc(30^\circ)=\frac{1}{\sin(30^\circ)}}[/tex][tex]\bf{\csc(30^\circ)=\frac{1}{\frac{1}{2}}}[/tex][tex]\boxed{\bf{\csc(30^\circ)=2}}[/tex][tex]\boxed{\bf{\csc(b)=2}}[/tex][tex]\to[/tex][tex]\bf{c.\ \sec(30^\circ)=\frac{1}{\cos(30^\circ)}}[/tex][tex]\bf{\sec(30^\circ)=\frac{1}{\frac{1}{2}\sqrt{3}}}[/tex][tex]\bf{\sec(30^\circ)=\frac{2}{\sqrt{3}}\ \to\ rasionalkan}[/tex][tex]\boxed{\bf{\sec(30^\circ)=\frac{2\sqrt{3}}{3}}}[/tex][tex]\boxed{\bf{\sec(b)=\frac{2\sqrt{3}}{3}}}[/tex][tex]\to[/tex][tex]\bf{d.\ \cot(30^\circ)=\frac{1}{\tan(30^\circ)}}[/tex][tex]\bf{\cot(30^\circ)=\frac{1}{\frac{\sin(30^\circ)}{\cos(30^\circ)}}}[/tex][tex]\bf{\cot\left(30^\circ\right)=\frac{\cos\left(30^\circ\right)}{\sin\left(30^\circ\right)}}[/tex][tex]\bf{\cot\left(30^\circ\right)=\frac{\frac{1}{2}\sqrt{3}}{\frac{1}{2}}}[/tex][tex]\boxed{\bf{\cot\left(30^\circ\right)=\sqrt{3}}}[/tex][tex]\boxed{\bf{\cot\left(b\right)=\sqrt{3}}}[/tex][tex] \: [/tex][tex] \: [/tex]Pelajari Lebih Lanjut :Contoh soal mencari sisi samping : https://brainly.co.id/tugas/48680192Contoh soal dan penyelesaian trigonometri : https://brainly.co.id/tugas/14823036Contoh soal yang serupa 1 : https://brainly.co.id/tugas/9349166Contoh soal yang serupa 2 : https://brainly.co.id/tugas/14975792Mencari cos a jika diketahui sin a : https://brainly.co.id/tugas/14652547[tex] \: [/tex][tex] \: [/tex]Detail Jawaban :Grade : SMAKode Kategorisasi : 10.2.6Kelas : 10Kode Mapel : 2Pelajaran : MatematikaBab : 6Sub Bab : Bab 6 – Trigonometri DasarKata Kunci : Trigonometri dasar.diketahui sin b = 1/2.maka[tex]\boxed{\bf{a.\ \cos\left(b\right)=\frac{1}{2}\sqrt{3}}}[/tex][tex]\boxed{\bf{b. \ \csc\left(b\right)=2}}[/tex][tex]\boxed{\bf{c. \ \sec\left(b\right)=\frac{2\sqrt{3}}{3}}}[/tex][tex]\boxed{\bf{d. \ \cot\left(b\right)=\sqrt{3}}}[/tex][tex] \: [/tex]Trigonometri dasarPendahuluanA.) Definisi.) Perbandingan TrigonometriPada segitiga siku-siku ABC, berlaku : *Gambar ke-1[tex]\small\mathbf{\left(a.\right)\ \ \sin\alpha=\frac{y}{r}=\frac{de}{mi}} [/tex][tex]\small\mathbf{\left(b.\right)\ \ \cos\alpha=\frac{x}{r}=\frac{sa}{mi}} [/tex][tex]\small\mathbf{\left(c.\right)\ \ \tan\alpha=\frac{y}{x}=\frac{de}{sa}} [/tex][tex]\small\mathbf{\left(d.\right)\ \ \csc\alpha=\frac{1}{\sin\alpha}=\frac{r}{y}}[/tex][tex]\small\mathbf{\left(e.\right)\ \ \sec\alpha=\frac{1}{\cos\alpha}=\frac{r}{x}}[/tex][tex]\small\mathbf{\left(f.\right)\ \ \cot\alpha=\frac{1}{\tan\alpha}=\frac{y}{x}}[/tex]B.) Sudut dan Kuadran1.) Pembagian Daerah [tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{absis(x)}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{Ordinat(y)}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\end{array}}[/tex]2.) Tanda-tanda Fungsi[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{sin}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\\&&&\\\mathbf{cos}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{tan}&\mathbf{+}&\mathbf{-}&\mathbf{+}&\mathbf{-}\end{array}}[/tex]3.) Sudut-sudut Istimewa[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{0^{\circ}}}&\underline{\mathbf{30^{\circ}}}&\underline{\mathbf{45^{\circ}}}&\underline{\mathbf{60^{\circ}}}\\&&&\\\mathbf{sin}&\mathbf{0}&\mathbf{\frac{1}{2}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}\sqrt{3}}\\&&&\\\mathbf{cos}&\mathbf{1}&\mathbf{\frac{1}{2}\sqrt{3}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}}\\&&&\\\mathbf{tan}&\mathbf{0}&\mathbf{\frac{1}{3}\sqrt{3}}&\mathbf{1}&\mathbf{\sqrt{3}}\end{array}} [/tex] [tex] \boxed{\begin{array}{c}\underline{\mathbf{90^{\circ}}}\\\\\mathbf{1}\\\\\mathbf{0}\\\\\infty\end{array}} [/tex]4.) Sudut Berelasia.   Kalau kita gunakan (90°± ...) atau (270°± ...)     1.) Fungsi berubah [tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-cos}\\\\\mathbf{cos}&\mathbf{+/-sin}\\\\\mathbf{tan}&\mathbf{+/-cot}\end{array}}[/tex]     2.)  Tanda +/- mengikuti kuadranb.   kalau kita gunakan (180°± ...) atau (360°− ...)     1.) Fungsi tetap[tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-sin}\\\\\mathbf{cos}&\mathbf{+/-cos}\\\\\mathbf{tan}&\mathbf{+/-tan}\end{array}}[/tex][tex] \: [/tex][tex] \: [/tex]PembahasanDiketahui :[tex]\bf{\sin b=\frac{1}{2}}[/tex]Ditanya : Maka nilai dari cos b, cosec b, sec b, dan cot b ialah...Jawaban :[tex]\to[/tex] pertama kita lihat dulu yang diketahui[tex]\bf{\sin b=\frac{1}{2}}[/tex]maka[tex]\bf{\sin b=30^{\circ}}[/tex][tex]\bf{\sin(30^{\circ})=\frac{1}{2}}[/tex][tex]\to[/tex] selanjutnya, kita lihat sudutnya sama-sama b (yang ditanya juga b).maka,[tex]\boxed{\bf{a.\ \cos(30^{\circ})=\frac{1}{2}\sqrt{3}}}[/tex][tex]\boxed{\bf{\cos(b)=\frac{1}{2}\sqrt{3}}}[/tex][tex]\to[/tex][tex]\bf{b.\ \csc(30^\circ)=\frac{1}{\sin(30^\circ)}}[/tex][tex]\bf{\csc(30^\circ)=\frac{1}{\frac{1}{2}}}[/tex][tex]\boxed{\bf{\csc(30^\circ)=2}}[/tex][tex]\boxed{\bf{\csc(b)=2}}[/tex][tex]\to[/tex][tex]\bf{c.\ \sec(30^\circ)=\frac{1}{\cos(30^\circ)}}[/tex][tex]\bf{\sec(30^\circ)=\frac{1}{\frac{1}{2}\sqrt{3}}}[/tex][tex]\bf{\sec(30^\circ)=\frac{2}{\sqrt{3}}\ \to\ rasionalkan}[/tex][tex]\boxed{\bf{\sec(30^\circ)=\frac{2\sqrt{3}}{3}}}[/tex][tex]\boxed{\bf{\sec(b)=\frac{2\sqrt{3}}{3}}}[/tex][tex]\to[/tex][tex]\bf{d.\ \cot(30^\circ)=\frac{1}{\tan(30^\circ)}}[/tex][tex]\bf{\cot(30^\circ)=\frac{1}{\frac{\sin(30^\circ)}{\cos(30^\circ)}}}[/tex][tex]\bf{\cot\left(30^\circ\right)=\frac{\cos\left(30^\circ\right)}{\sin\left(30^\circ\right)}}[/tex][tex]\bf{\cot\left(30^\circ\right)=\frac{\frac{1}{2}\sqrt{3}}{\frac{1}{2}}}[/tex][tex]\boxed{\bf{\cot\left(30^\circ\right)=\sqrt{3}}}[/tex][tex]\boxed{\bf{\cot\left(b\right)=\sqrt{3}}}[/tex][tex] \: [/tex][tex] \: [/tex]Pelajari Lebih Lanjut :Contoh soal mencari sisi samping : https://brainly.co.id/tugas/48680192Contoh soal dan penyelesaian trigonometri : https://brainly.co.id/tugas/14823036Contoh soal yang serupa 1 : https://brainly.co.id/tugas/9349166Contoh soal yang serupa 2 : https://brainly.co.id/tugas/14975792Mencari cos a jika diketahui sin a : https://brainly.co.id/tugas/14652547[tex] \: [/tex][tex] \: [/tex]Detail Jawaban :Grade : SMAKode Kategorisasi : 10.2.6Kelas : 10Kode Mapel : 2Pelajaran : MatematikaBab : 6Sub Bab : Bab 6 – Trigonometri DasarKata Kunci : Trigonometri dasar.diketahui sin b = 1/2.maka[tex]\boxed{\bf{a.\ \cos\left(b\right)=\frac{1}{2}\sqrt{3}}}[/tex][tex]\boxed{\bf{b. \ \csc\left(b\right)=2}}[/tex][tex]\boxed{\bf{c. \ \sec\left(b\right)=\frac{2\sqrt{3}}{3}}}[/tex][tex]\boxed{\bf{d. \ \cot\left(b\right)=\sqrt{3}}}[/tex][tex] \: [/tex]Trigonometri dasarPendahuluanA.) Definisi.) Perbandingan TrigonometriPada segitiga siku-siku ABC, berlaku : *Gambar ke-1[tex]\small\mathbf{\left(a.\right)\ \ \sin\alpha=\frac{y}{r}=\frac{de}{mi}} [/tex][tex]\small\mathbf{\left(b.\right)\ \ \cos\alpha=\frac{x}{r}=\frac{sa}{mi}} [/tex][tex]\small\mathbf{\left(c.\right)\ \ \tan\alpha=\frac{y}{x}=\frac{de}{sa}} [/tex][tex]\small\mathbf{\left(d.\right)\ \ \csc\alpha=\frac{1}{\sin\alpha}=\frac{r}{y}}[/tex][tex]\small\mathbf{\left(e.\right)\ \ \sec\alpha=\frac{1}{\cos\alpha}=\frac{r}{x}}[/tex][tex]\small\mathbf{\left(f.\right)\ \ \cot\alpha=\frac{1}{\tan\alpha}=\frac{y}{x}}[/tex]B.) Sudut dan Kuadran1.) Pembagian Daerah [tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{absis(x)}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{Ordinat(y)}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\end{array}}[/tex]2.) Tanda-tanda Fungsi[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{sin}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\\&&&\\\mathbf{cos}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{tan}&\mathbf{+}&\mathbf{-}&\mathbf{+}&\mathbf{-}\end{array}}[/tex]3.) Sudut-sudut Istimewa[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{0^{\circ}}}&\underline{\mathbf{30^{\circ}}}&\underline{\mathbf{45^{\circ}}}&\underline{\mathbf{60^{\circ}}}\\&&&\\\mathbf{sin}&\mathbf{0}&\mathbf{\frac{1}{2}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}\sqrt{3}}\\&&&\\\mathbf{cos}&\mathbf{1}&\mathbf{\frac{1}{2}\sqrt{3}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}}\\&&&\\\mathbf{tan}&\mathbf{0}&\mathbf{\frac{1}{3}\sqrt{3}}&\mathbf{1}&\mathbf{\sqrt{3}}\end{array}} [/tex] [tex] \boxed{\begin{array}{c}\underline{\mathbf{90^{\circ}}}\\\\\mathbf{1}\\\\\mathbf{0}\\\\\infty\end{array}} [/tex]4.) Sudut Berelasia.   Kalau kita gunakan (90°± ...) atau (270°± ...)     1.) Fungsi berubah [tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-cos}\\\\\mathbf{cos}&\mathbf{+/-sin}\\\\\mathbf{tan}&\mathbf{+/-cot}\end{array}}[/tex]     2.)  Tanda +/- mengikuti kuadranb.   kalau kita gunakan (180°± ...) atau (360°− ...)     1.) Fungsi tetap[tex]\boxed{\begin{array}{c|c}\underline{\mathbf{Mula-mula}}&\underline{\mathbf{Perubahan}}\\\\\mathbf{sin}&\mathbf{+/-sin}\\\\\mathbf{cos}&\mathbf{+/-cos}\\\\\mathbf{tan}&\mathbf{+/-tan}\end{array}}[/tex][tex] \: [/tex][tex] \: [/tex]PembahasanDiketahui :[tex]\bf{\sin b=\frac{1}{2}}[/tex]Ditanya : Maka nilai dari cos b, cosec b, sec b, dan cot b ialah...Jawaban :[tex]\to[/tex] pertama kita lihat dulu yang diketahui[tex]\bf{\sin b=\frac{1}{2}}[/tex]maka[tex]\bf{\sin b=30^{\circ}}[/tex][tex]\bf{\sin(30^{\circ})=\frac{1}{2}}[/tex][tex]\to[/tex] selanjutnya, kita lihat sudutnya sama-sama b (yang ditanya juga b).maka,[tex]\boxed{\bf{a.\ \cos(30^{\circ})=\frac{1}{2}\sqrt{3}}}[/tex][tex]\boxed{\bf{\cos(b)=\frac{1}{2}\sqrt{3}}}[/tex][tex]\to[/tex][tex]\bf{b.\ \csc(30^\circ)=\frac{1}{\sin(30^\circ)}}[/tex][tex]\bf{\csc(30^\circ)=\frac{1}{\frac{1}{2}}}[/tex][tex]\boxed{\bf{\csc(30^\circ)=2}}[/tex][tex]\boxed{\bf{\csc(b)=2}}[/tex][tex]\to[/tex][tex]\bf{c.\ \sec(30^\circ)=\frac{1}{\cos(30^\circ)}}[/tex][tex]\bf{\sec(30^\circ)=\frac{1}{\frac{1}{2}\sqrt{3}}}[/tex][tex]\bf{\sec(30^\circ)=\frac{2}{\sqrt{3}}\ \to\ rasionalkan}[/tex][tex]\boxed{\bf{\sec(30^\circ)=\frac{2\sqrt{3}}{3}}}[/tex][tex]\boxed{\bf{\sec(b)=\frac{2\sqrt{3}}{3}}}[/tex][tex]\to[/tex][tex]\bf{d.\ \cot(30^\circ)=\frac{1}{\tan(30^\circ)}}[/tex][tex]\bf{\cot(30^\circ)=\frac{1}{\frac{\sin(30^\circ)}{\cos(30^\circ)}}}[/tex][tex]\bf{\cot\left(30^\circ\right)=\frac{\cos\left(30^\circ\right)}{\sin\left(30^\circ\right)}}[/tex][tex]\bf{\cot\left(30^\circ\right)=\frac{\frac{1}{2}\sqrt{3}}{\frac{1}{2}}}[/tex][tex]\boxed{\bf{\cot\left(30^\circ\right)=\sqrt{3}}}[/tex][tex]\boxed{\bf{\cot\left(b\right)=\sqrt{3}}}[/tex][tex] \: [/tex][tex] \: [/tex]Pelajari Lebih Lanjut :Contoh soal mencari sisi samping : https://brainly.co.id/tugas/48680192Contoh soal dan penyelesaian trigonometri : https://brainly.co.id/tugas/14823036Contoh soal yang serupa 1 : https://brainly.co.id/tugas/9349166Contoh soal yang serupa 2 : https://brainly.co.id/tugas/14975792Mencari cos a jika diketahui sin a : https://brainly.co.id/tugas/14652547[tex] \: [/tex][tex] \: [/tex]Detail Jawaban :Grade : SMAKode Kategorisasi : 10.2.6Kelas : 10Kode Mapel : 2Pelajaran : MatematikaBab : 6Sub Bab : Bab 6 – Trigonometri DasarKata Kunci : Trigonometri dasar.

Semoga dengan pertanyaan yang sudah terjawab oleh Sinogen dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Tue, 31 Jan 23