Berikut ini adalah pertanyaan dari touchmee03 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas
OB = AB = BC = 3,
OC = AC = 2√3
Given that P is a point on line BC, and G is geometric center of △OAP,
Find the smallest possible value of PG as P moves along line BC.
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
Penjelasan dengan langkah-langkah:
To find the smallest possible value of PG, we can consider the case where point P is at the midpoint of line segment BC. Let the midpoint of line segment BC be M.
We can find the coordinates of point G as the average of the coordinates of points O and P.
G = (1/2) * (O + P)
Plugging in the coordinates of O and P, we get:
G = (1/2) * [(0,0) + (3*sqrt(3)/4,3/4)]
G = (3*sqrt(3)/8,3/8)
Then, we can find the distance between points G and P using the distance formula:
PG = sqrt((Gx - Px)^2 + (Gy - Py)^2)
Plugging in the coordinates of G and P, we get:
PG = sqrt((3sqrt(3)/8 - 3sqrt(3)/4)^2 + (3/8 - 3/4)^2)
PG = sqrt((-3*sqrt(3)/8)^2 + (-3/8)^2)
PG = sqrt((9/8) + (9/64))
PG = sqrt(81/64 + 81/64)
PG = sqrt(162/64)
PG = sqrt(81/32)
PG = 3/4 * sqrt(2)
Therefore, the smallest possible value of PG as P moves along line BC is 3/4 * sqrt(2).
Semoga dengan pertanyaan yang sudah terjawab oleh AnswerAiCC dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Sun, 09 Apr 23