Diketahui j(x) = 2x + 5 dan (jo k)-¹(x) =

Berikut ini adalah pertanyaan dari zaneawesome455 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Diketahui j(x) = 2x + 5 dan (jo k)-¹(x) = (x - 9), nilai k(2) ​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Fungsi Invers~

Diketahui j(x) = 2x + 5 dan (jo k)-¹(x) = (x - 9),

Maka

nilai dari k(2) = 3

 \:

Fungsi Komposisi dan Fungsi Invers

Pendahuluan

A.  Definisi Fungsi

Fungsi dari himpunan A ke Himpunan B => relasi yang memetakan setiap anggota A dengan tetap satu anggota B.

 \:

 \boxed{\boxed{\mathbf{B.\ \ Operasi\ Aljabar}}}

 \scriptsize\boxed{\begin{array}{c}\mathbf{1.\ Penjumlahan\ dan\ Pengurangan\ Fungsi}\\\mathbf{\left(f\pm g\right)\left(x\right)=f\left(x\right)\pm g\left(x\right)}\\\\\mathbf{2.\ Perkalian\ Fungsi}\\\mathbf{\left(f\ .\ g\right)\left(x\right)=f\left(x\right)g\left(x\right)}\\\\\mathbf{3.\ Pembagian\ Fungsi}\\\mathbf{\left(\frac{f}{g}\right)\left(x\right)=\frac{f\left(x\right)}{g\left(x\right)}}\\\\\mathbf{4.\ Perpangkatan}\\\mathbf{\left(f\left(x\right)\right)^{n}=f^{n}\left(x\right)}\end{array}}

 \:

 \boxed{\boxed{\mathbf{C.\ \ Fungsi\ Komposisi}}}

 \scriptsize\mathbf{1.\ Fungsi\ komposisi\ dapat\ ditulis\ sebagai\ :}\\\\\mathbf{\left(f \circ g\right)\left(x\right)=f\left(g\left(x\right)\right)\to komposisi\ g}\\\mathbf{\left(g \circ f\right)\left(x\right)=g\left(f\left(x\right)\right)\to komposisi\ f}

 \boxed{\underbrace{\mathbf{x\to_{g}\ g\left(x\right)\to_{f}\ f\left(g\left(x\right)\right)}}_{\mathbf{\left(f\circ g\right)\left(x\right)=f\left(g\left(x\right)\right)}}}

 \:

 \scriptsize\mathbf{2.\ Sifat\ fungsi\ komposisi,\ antara\ lain\ :}\\\\\mathbf{a.\ Tidak\ komutatif,\ \left(f \circ g\right)\left(x\right)\ne\left(g \circ f\right)\left(x\right).}\\\mathbf{b.\ Asosiatif,\ \left(f \circ \left(g \circ h\right)\right)\left(x\right)=\left(\left(f \circ g\right) \circ h\right)\left(x\right).}\\\mathbf{c.\ Terdapat\ unsur\ identitas\ \left(I\right)\ \left(x\right),\ }\\\mathbf{\left(f \circ I\right)\left(x\right)=\left(I \circ f\right)\left(x\right)=f\left(x\right).}

 \:

\boxed{\boxed{\mathbf{D. \ \ Fungsi \ Invers}}}

\small\mathbf{1.) \ f^{-1} (x) \to invers\ dari\ fungsi\ f\left(x\right).}

\boxed{\mathbf{\boxed{\mathbf{f^{-1}\left(y\right)=x}}\ _{f^{-1}} \rightleftharpoons ^{f} \ \boxed{\mathbf{y=f\left(x\right)}}}}

 \:

\scriptsize\mathbf{2.) \ Invers\ dapat\ ditentukan\ dengan\ mengubah\ bentuk}

\scriptsize\mathbf{f\left(x\right)=y=...} \ \scriptsize\mathbf{menjadi} \ \scriptsize\mathbf{f^{-1}\left(y\right)=x=...}

 \:

\mathbf{3.)\ Sifat\ fungsi \ invers \ :}

\mathbf{a.\ \left(f \circ f^{-1}\right)\left(x\right)=\left(f^{-1} \circ f\right)\left(x\right)=I\left(x\right)}

\mathbf{b.\ \left(f \circ g\right)^{-1}\left(x\right)=\left(g^{-1} \circ f^{-1}\right)\left(x\right)}

\mathbf{c.\ \left(f \circ g\right)\left(x\right)=h\left(x\right)\to f\left(x\right)=\left(h \circ g^{-1}\right)\left(x\right)}

 \:

\mathbf{4.\ Rumus \ Cepat :}

\small\boxed{\mathbf{f\left(x\right)=\frac{ax+b}{cx+d}\to f^{-1}\left(x\right)=\frac{-dx+b}{cx-a}}}

 \:

 \:

Pembahasan

Diketahui :

\bf{j\left(x\right)=2x+5}

\bf{\left(j \circ k\right)^{-1}\left(x\right)=x-9}

Ditanya :

nilai k(2) = ....?

Jawaban :

Karena yang dicari k(2), maka ubah dulu (j o k)^{-1} (x) menjadi (j o k) (x).

\bf{\left(j \circ k\right)^{-1}\left(x\right)=x-9}

misalkan y = x - 9 (hasil dari (j o k)^{-1} (x) untuk mencari (j o k) (x) dengan permisalan sama dengan 'y' yang nantik si 'x' berdiri sendiri di ruas lainnya.

\bf{y=x-9}

\bf{x=y+9}

\bf{\left(j \circ k\right)\left(x\right)=x+9}

Selanjutnya... cari k(x) dulu,

\bf{\left(j \circ k\right)\left(x\right)=j\left(k\left(x\right)\right)}

\bf{x+9=2\left(k\left(x\right)\right)+5}

\bf{x+4=2\left(k\left(x\right)\right)}

\bf{2\left(k\left(x\right)\right)=x+4}

\bf{k\left(x\right)=\frac{x+4}{2}}

Sehingga, nilai dari k(2) ialah

\bf{k\left(2\right)=\frac{2+4}{2}}

\bf{k\left(2\right)=\frac{6}{2}}

\boxed{\bf{k\left(2\right)=3}}

 \:

 \:

Pelajari Lebih Lanjut :

 \:

 \:

Detail Jawaban

Kelas : 11 SMA

Bab : 2

Sub Bab : Bab 6 - Fungsi

Kode Kategorisasi : 11.2.6

Kata Kunci : Fungsi Komposisi dan Fungsi invers.

Semoga dengan pertanyaan yang sudah terjawab oleh Sinogen dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Thu, 08 Dec 22