carilah invers dari matriks pada gambar. gunakan metode OBE​

Berikut ini adalah pertanyaan dari BrainChamp pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Carilah invers dari matriks pada gambar. gunakan metode OBE​
carilah invers dari matriks pada gambar. gunakan metode OBE​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Invers matriks tersebut adalah:
\begin{pmatrix}\vphantom{\bigg|}\ \bf\dfrac{5}{3} & \bf0 & \bf{-}\dfrac{10}{3}\ \\\vphantom{\Bigg|}\ \bf\dfrac{7}{3} & \bf1 & \bf\dfrac{10}{3}\ \\\vphantom{\Big|}\ \bf1 & \bf{-}1 & \bf0\ \end{pmatrix}

Pembahasan

Mencari Invers Matriks dengan metode Operasi Baris Elementer (OBE)

Diketahui

Matriks:
\begin{aligned}&\begin{pmatrix}\vphantom{\bigg|}\dfrac{1}{5} & \dfrac{1}{5} & \dfrac{1}{5} \\\vphantom{\Bigg|}\dfrac{1}{5} & \dfrac{1}{5} & -\dfrac{4}{5} \\\vphantom{\bigg|}-\dfrac{1}{5} & \dfrac{1}{10} & \dfrac{1}{10}\end{pmatrix}\end{aligned}

Ditanyakan
Invers matriks tersebut dengan menggunakan metode OBE.

PENYELESAIAN

Kita konstruksi augmented matrix-nya terlebih dahulu, lalu selesaikan dengan OBE.

\begin{aligned}&\left(\begin{array}{c|c}\begin{matrix}\vphantom{\bigg|}\dfrac{1}{5} & \dfrac{1}{5} & \dfrac{1}{5} \\\vphantom{\Bigg|}\dfrac{1}{5} & \dfrac{1}{5} & {-}\dfrac{4}{5} \\\vphantom{\bigg|}{-}\dfrac{1}{5} & \dfrac{1}{10} & \dfrac{1}{10}\end{matrix}&\begin{matrix}\vphantom{\bigg|}1 & 0 & 0 \\\vphantom{\Bigg|}0 & 1 & 0 \\\vphantom{\bigg|}0 & 0 & 1\end{matrix}&\end{array}\right)\\&.........................................................................\\\end{aligned}

\begin{aligned}&\begin{aligned}5R_1\to R_1\\5R_2\to R_2\\10R_3\to R_3\\\end{aligned}\quad\left(\begin{array}{c|c}\begin{matrix}\vphantom{\Big|}1 & 1 & 1 \\\vphantom{\Big|}1 & 1 & -4 \\\vphantom{\Big|}{-}2 & 1 & 1\end{matrix}&\begin{matrix}\vphantom{\Big|}5 & 0 & 0 \\\vphantom{\Big|}0 & 5 & 0 \\\vphantom{\Big|}0 & 0 & 10\end{matrix}&\end{array}\right)\\&.........................................................................\\\end{aligned}

\begin{aligned}&\begin{aligned}R_2-R_1\to R_2\\R_3+2R_1\to R_3\end{aligned}\quad\left(\begin{array}{c|c}\begin{matrix}\vphantom{\Big|}1 & 1 & 1 \\\vphantom{\Big|}0 & 0 & -5 \\\vphantom{\Big|}0 & 3 & 3\end{matrix}&\begin{matrix}\vphantom{\Big|}5 & 0 & 0 \\\vphantom{\Big|}{-}5 & 5 & 0 \\\vphantom{\Big|}10 & 0 & 10\end{matrix}&\end{array}\right)\\&.........................................................................\\\end{aligned}

\begin{aligned}&\begin{aligned}R_2\longleftrightarrow R_3\end{aligned}\quad\left(\begin{array}{c|c}\begin{matrix}\vphantom{\Big|}1 & 1 & 1\\\vphantom{\Big|}0 & 3 & 3\\\vphantom{\Big|}0 & 0 & -5\end{matrix}&\begin{matrix}\vphantom{\Big|}5 & 0 & 0\\\vphantom{\Big|}10 & 0 & 10\\\vphantom{\Big|}{-}5 & 5 & 0\end{matrix}&\end{array}\right)\\&.........................................................................\\\end{aligned}

\begin{aligned}&\begin{aligned}\frac{1}{3}R_2\to R_2\\\left(-\frac{1}{5}\right)R_3\to R_3\end{aligned}\quad\left(\begin{array}{c|c}\begin{matrix}\vphantom{\Big|}1 & 1 & 1\\\vphantom{\Bigg|}0 & 1 & 1\\\vphantom{\Big|}0 & 0 & 1\end{matrix}&\begin{matrix}\vphantom{\Big|}5 & 0 & 0\\\vphantom{\Bigg|}\dfrac{10}{3} & 0 & \dfrac{10}{3}\\\vphantom{\Big|}1 & {-}1 & 0\end{matrix}&\end{array}\right)\\&.........................................................................\\\end{aligned}

\begin{aligned}&\begin{aligned}R_2-R_3\to R_2\end{aligned}\quad\left(\begin{array}{c|c}\begin{matrix}\vphantom{\Big|}1 & 1 & 1\\\vphantom{\Bigg|}0 & 1 & 0\\\vphantom{\Big|}0 & 0 & 1\end{matrix}&\begin{matrix}\vphantom{\Big|}5 & 0 & 0\\\vphantom{\Bigg|}\dfrac{7}{3} & 1 & \dfrac{10}{3}\\\vphantom{\Big|}1 & {-}1 & 0\end{matrix}&\end{array}\right)\\&.........................................................................\\\end{aligned}

\begin{aligned}&\begin{aligned}R_1-R_3\to R_1\end{aligned}\quad\left(\begin{array}{c|c}\begin{matrix}\vphantom{\Big|}1 & 1 & 0\\\vphantom{\Bigg|}0 & 1 & 0\\\vphantom{\Big|}0 & 0 & 1\end{matrix}&\begin{matrix}\vphantom{\Big|}4 & 1 & 0\\\vphantom{\Bigg|}\dfrac{7}{3} & 1 & \dfrac{10}{3}\\\vphantom{\Big|}1 & {-}1 & 0\end{matrix}&\end{array}\right)\\&.........................................................................\\\end{aligned}

\begin{aligned}&\begin{aligned}R_1-R_2\to R_1\end{aligned}\quad\left(\begin{array}{c|c}\begin{matrix}\vphantom{\bigg|}1 & 0 & 0\\\vphantom{\Bigg|}0 & 1 & 0\\\vphantom{\Big|}0 & 0 & 1\end{matrix}&\begin{matrix}\vphantom{\bigg|}\bf\dfrac{5}{3} & \bf0 & \bf{-}\dfrac{10}{3}\\\vphantom{\Bigg|}\bf\dfrac{7}{3} & \bf1 & \bf\dfrac{10}{3}\\\vphantom{\Big|}\bf1 & \bf{-}1 & \bf0\end{matrix}&\end{array}\right)\\&.........................................................................\\\end{aligned}

KESIMPULAN

Dengan demikian, invers matriks tersebut adalah:
\begin{pmatrix}\vphantom{\bigg|}\ \bf\dfrac{5}{3} & \bf0 & \bf{-}\dfrac{10}{3}\ \\\vphantom{\Bigg|}\ \bf\dfrac{7}{3} & \bf1 & \bf\dfrac{10}{3}\ \\\vphantom{\Big|}\ \bf1 & \bf{-}1 & \bf0\ \end{pmatrix}
\blacksquare

Semoga dengan pertanyaan yang sudah terjawab oleh henriyulianto dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Sun, 01 Jan 23