Diketahui lingkaran L: x² + y² - 2x - 4y

Berikut ini adalah pertanyaan dari hjdianarasyid28 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Diketahui lingkaran L: x² + y² - 2x - 4y - 10 = 0. Garis yang membelah lingkaran menjadi dua bagian yang luasnya sama dan melalui titik (6, 6) memiliki persamaan.. 3​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawaban:

garis yg membagi lingkaran menjadi 2 bagian sama ==> berhimpit dengan garis diameter ==> melalui titik pusat lingkaran

mencari titik pusat lingkaran:

rumus utk lingkaran x² + y² + Ax + By + C = 0

titik pusat = (-½A, -½B)

utk lingkaran ini, titik pusat = (-½×(-2), -½(-4))

= (1, 2)

grs yg melalui (6, 6) & (1, 2):

 \frac{y - y1}{y2 - y1} = \frac{x - x1}{x2 - x1}

 \frac{y - 2}{6 - 2} = \frac{x - 1}{6 - 1}

 \frac{y - 2}{4} = \frac{x - 1}{5}

5(y-2) = 4(x-1)

4x - 5y + 6 = 0

Semoga dengan pertanyaan yang sudah terjawab oleh chongkeagan dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Sat, 03 Jun 23