Berikut ini adalah pertanyaan dari zrosalindafitri pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
Diketahui AC = AB - BC = 27 - 2 = 25 cm dan CD = 4 cm, maka:
AC^2 = AD^2 + CD^2
25^2 = AD^2 + 4^2
625 = AD^2 + 16
AD^2 = 609
AD = √609 ≈ 24,68 cm
Selanjutnya, kita dapat menggunakan kaidah trigonometri pada segitiga ADE untuk menentukan panjang FD.
Sinus sudut ADE dapat dihitung sebagai:
sin(ADE) = DE / AD
sin(ADE) = 12 / 24,68
sin(ADE) ≈ 0,485
Maka sudut ADE dapat dihitung dengan invers sinus (sin^-1):
ADE = sin^-1(0,485)
ADE ≈ 29,2°
Kita juga dapat menggunakan kaidah trigonometri pada segitiga EDC untuk menentukan panjang FD.
Sinus sudut EDC dapat dihitung sebagai:
sin(EDC) = CD / DE
sin(EDC) = 4 / 12
sin(EDC) = 0,333
Maka sudut EDC dapat dihitung dengan invers sinus (sin^-1):
EDC = sin^-1(0,333)
EDC ≈ 19,5°
Diketahui sudut EDF = 180° - sudut ADE - sudut EDC, maka:
EDF = 180° - 29,2° - 19,5°
EDF ≈ 131,3°
Selanjutnya, kita dapat menggunakan kaidah trigonometri pada segitiga EDF untuk menentukan panjang FD.
Sinus sudut EDF dapat dihitung sebagai:
sin(EDF) = FD / DE
sin(EDF) = FD / 12
FD = 12 x sin(EDF)
FD = 12 x sin(131,3°)
FD ≈ 10 cm
Akhirnya, kita dapat menghitung panjang FC sebagai:
FC = CD + FD
FC = 4 + 10
FC = 14 cm
Sehingga jawaban yang benar adalah pilihan jawaban E. 14 cm.
Semoga dengan pertanyaan yang sudah terjawab oleh dipelajarsantay dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Wed, 28 Jun 23