Berikut ini adalah pertanyaan dari amaniri pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas
BDE and CDE. It is given that ABCD is a
straight line and BC is half of CD. Find the
value of cos 0+tan x.
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
To find the value of cos 0+tan x, we can use the Pythagorean theorem to find the length of the sides of triangle BDE and triangle CDE.
In triangle BDE, we have:
DE = 8 cm (given)
BE = 6 cm (given)
BD = ?
We can use the Pythagorean theorem to find the length of BD:
BD = √(DE^2 - BE^2) = √(8^2 - 6^2) = √(64 - 36) = √(28) = 2√(7) cm
In triangle CDE, we have:
DE = 8 cm (given)
CE = 4 cm (half of CD)
CD = ?
We can use the Pythagorean theorem to find the length of CD:
CD = √(DE^2 - CE^2) = √(8^2 - 4^2) = √(64 - 16) = √(48) = 4√(3) cm
Now that we have the lengths of the sides of the triangles, we can find the value of cos 0+tan x.
First, we can find the value of cos 0:
cos 0 = BD/DE = (2√(7))/8 = √(7)/4
Then, we can find the value of tan x:
tan x = BD/CE = (2√(7))/(4) = √(7)/2
Finally, we can add the value of cos 0 and tan x to find the value of cos 0+tan x:
cos 0+tan x = (√(7)/4) + (√(7)/2) = (√(7)/4) + (2√(7)/4) = 3√(7)/4
Therefore, the value of cos 0+tan x is 3√(7)/4.
Semoga dengan pertanyaan yang sudah terjawab oleh wielinoabraham dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Sat, 18 Mar 23