Diketahui jajargenjang ABCD dgn pnjng diagonal c dan d.Dengan menggunakan

Berikut ini adalah pertanyaan dari jonana2711 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Diketahui jajargenjang ABCD dgn pnjng diagonal c dan d.Dengan menggunakan aturan kosinus, tunjukkan bhwa c² + d² = 2(a² + b²).​
Diketahui jajargenjang ABCD dgn pnjng diagonal c dan d.Dengan menggunakan aturan kosinus, tunjukkan bhwa c² + d² = 2(a² + b²).​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawab:

Penjelasan dengan langkah-langkah:

Trigonometri

lihat dalam detail gambar untuk melihat secara rinci potongan ΔDAB dan Δ ABC , sehingga diperoleh

c² = a²+b²-2cosA

d² = a²+b²-2cosB ⇔ (cos B = cos(180-A)⇒-cosA)

   = a²+b²-2(-cosA)

   = a²+b²+2cosA

∵ maka

c²+d² = a²+b²-2cosA + a²+b²+2cosA

c²+d² = a²+a²+b²+b²-2cosA+2cosA

c²+d² = 2a²+2b²

c²+d² = 2(a²+b²)

Terbukti

Jawab:Penjelasan dengan langkah-langkah:Trigonometri lihat dalam detail gambar untuk melihat secara rinci potongan ΔDAB dan Δ ABC , sehingga diperolehc² = a²+b²-2cosAd² = a²+b²-2cosB ⇔ (cos B = cos(180-A)⇒-cosA)    = a²+b²-2(-cosA)    = a²+b²+2cosA∵ maka c²+d² = a²+b²-2cosA + a²+b²+2cosAc²+d² = a²+a²+b²+b²-2cosA+2cosAc²+d² = 2a²+2b²c²+d² = 2(a²+b²) TerbuktiJawab:Penjelasan dengan langkah-langkah:Trigonometri lihat dalam detail gambar untuk melihat secara rinci potongan ΔDAB dan Δ ABC , sehingga diperolehc² = a²+b²-2cosAd² = a²+b²-2cosB ⇔ (cos B = cos(180-A)⇒-cosA)    = a²+b²-2(-cosA)    = a²+b²+2cosA∵ maka c²+d² = a²+b²-2cosA + a²+b²+2cosAc²+d² = a²+a²+b²+b²-2cosA+2cosAc²+d² = 2a²+2b²c²+d² = 2(a²+b²) TerbuktiJawab:Penjelasan dengan langkah-langkah:Trigonometri lihat dalam detail gambar untuk melihat secara rinci potongan ΔDAB dan Δ ABC , sehingga diperolehc² = a²+b²-2cosAd² = a²+b²-2cosB ⇔ (cos B = cos(180-A)⇒-cosA)    = a²+b²-2(-cosA)    = a²+b²+2cosA∵ maka c²+d² = a²+b²-2cosA + a²+b²+2cosAc²+d² = a²+a²+b²+b²-2cosA+2cosAc²+d² = 2a²+2b²c²+d² = 2(a²+b²) Terbukti

Semoga dengan pertanyaan yang sudah terjawab oleh CLA1R0 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Sun, 16 Jul 23