minta tolonh integral parsial ka​

Berikut ini adalah pertanyaan dari ariem406 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Minta tolonh integral parsial ka​
minta tolonh integral parsial ka​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

1. Hasil dari \displaystyle{f(x)=\int\limits {\sqrt{9+x^2}} \, dx }adalah\displaystyle{\boldsymbol{f(x)=\frac{x\sqrt{9+x^2}}{2}+\frac{9}{2}ln\left | \frac{x+\sqrt{9+x^2}}{3} \right |+C} }.

2. Hasil dari \displaystyle{f(x)=\int\limits^{\frac{\pi}{4}}_0 {\sqrt{9+x^2}} \, dx }adalah\displaystyle{\boldsymbol{f(x)=\frac{\pi\sqrt{144+\pi^2}}{32}+\frac{9}{2}ln\left | \frac{\pi+\sqrt{144+\pi^2}}{12} \right |} }.

PEMBAHASAN

Salah satu metode untuk menyelesaikan integral adalah metode integral parsial, dimana :

\displaystyle{\int\limits {u} \, dv=uv-\int\limits {v} \, du }

.

DIKETAHUI

\displaystyle{1.~f(x)=\int\limits {\sqrt{9+x^2}} \, dx }

\displaystyle{2.~f(x)=\int\limits^{\frac{\pi}{4}}_0 {\sqrt{9+x^2}} \, dx }

.

DITANYA

Tentukan hasilnya.

.

PENYELESAIAN

Soal 1.

Misal :

\displaystyle{tan\theta=\frac{x}{3}~\to~sec\theta=\frac{\sqrt{9+x^2}}{3}}

\displaystyle{3tan\theta=x}

\displaystyle{3sec^2\theta d\theta=dx}

.

\displaystyle{\int\limits {\sqrt{9+x^2}} \, dx=\int\limits {\sqrt{9+(3tan\theta)^2}} \, (3sec^2\theta d\theta) }

\displaystyle{\int\limits {\sqrt{9+x^2}} \, dx=3\int\limits {sec^2\theta\sqrt{9(1+tan^2\theta)}} \, d\theta }

\displaystyle{\int\limits {\sqrt{9+x^2}} \, dx=3\int\limits {sec^2\theta\sqrt{9sec^2\theta}} \, d\theta }

\displaystyle{\int\limits {\sqrt{9+x^2}} \, dx=9\int\limits {sec^3\theta} \, d\theta }

\displaystyle{\int\limits {\sqrt{9+x^2}} \, dx=9\int\limits {sec\theta sec^2\theta} \, d\theta }

-----------

Mencari \displaystyle{\int\limits {sec\theta sec^2\theta} \, d\theta } :

Misal :

u=sec\theta~\to~du=sec\theta tan\theta d\theta

dv=sec^2\theta d\theta~\to~v=tan\theta

.

\displaystyle{\int\limits {sec\theta sec^2\theta} \, d\theta=uv-\int\limits {v} \, du }

\displaystyle{\int\limits {sec\theta sec^2\theta} \, d\theta=sec\theta tan\theta-\int\limits {tan\theta} \, (sec\theta tan\theta d\theta) }

\displaystyle{\int\limits {sec\theta sec^2\theta} \, d\theta=sec\theta tan\theta-\int\limits {sec\theta tan^2\theta} \, d\theta }

\displaystyle{\int\limits {sec\theta sec^2\theta} \, d\theta=sec\theta tan\theta-\int\limits {sec\theta(sec^2\theta-1)} \, d\theta }

\displaystyle{\int\limits {sec\theta sec^2\theta} \, d\theta=sec\theta tan\theta-\int\limits {sec\theta sec^2\theta} \, d\theta+\int\limits {sec\theta} \, d\theta }

\displaystyle{2\int\limits {sec\theta sec^2\theta} \, d\theta=sec\theta tan\theta+\int\limits {sec\theta} \, d\theta }

\displaystyle{2\int\limits {sec\theta sec^2\theta} \, d\theta=sec\theta tan\theta+ln|tan\theta+sec\theta|+C }

\displaystyle{\int\limits {sec\theta sec^2\theta} \, d\theta=\frac{1}{2}\left ( sec\theta tan\theta+ln|tan\theta+sec\theta| \right )+C }

-----------

\displaystyle{\int\limits {\sqrt{9+x^2}} \, dx=9\int\limits {sec\theta sec^2\theta} \, d\theta }

\displaystyle{\int\limits {\sqrt{9+x^2}} \, dx =\frac{9}{2}\left ( sec\theta tan\theta+ln|tan\theta+sec\theta| \right )+C }

Substitusi kembali nilai tanθ dan secθ

\displaystyle{\int\limits {\sqrt{9+x^2}} \, dx=\frac{9}{2}\left [ \frac{\sqrt{9+x^2}}{3} \frac{x}{3}+ln\left | \frac{\sqrt{9+x^2}}{3}+\frac{x}{3} \right | \right ]+C }

\displaystyle{\int\limits {\sqrt{9+x^2}} \, dx=\frac{9}{2}\left [ \frac{x\sqrt{9+x^2}}{9} +ln\left | \frac{x+\sqrt{9+x^2}}{3} \right | \right ]+C }

\displaystyle{\int\limits {\sqrt{9+x^2}} \, dx=\frac{x\sqrt{9+x^2}}{2}+\frac{9}{2}ln\left | \frac{x+\sqrt{9+x^2}}{3} \right |+C }

.

Soal 2.

\displaystyle{f(x)=\int\limits^{\frac{\pi}{4}}_0 {\sqrt{9+x^2}} \, dx }

\displaystyle{f(x)=\frac{x\sqrt{9+x^2}}{2}+\frac{9}{2}ln\left | \frac{x+\sqrt{9+x^2}}{3} \right |\Bigr|^{\frac{\pi}{4}}_{0} }

\displaystyle{f(x)=\frac{\frac{\pi}{4}\sqrt{9+\frac{\pi^2}{16}}}{2}+\frac{9}{2}ln\left | \frac{\frac{\pi}{4}+\sqrt{9+\frac{\pi^2}{16}}}{3} \right |-\frac{0\sqrt{9+0}}{2}+\frac{9}{2}ln\left | \frac{0+\sqrt{9+0}}{3} \right | }

\displaystyle{f(x)=\frac{\pi\sqrt{\frac{144+\pi^2}{16}}}{8}+\frac{9}{2}ln\left | \frac{\frac{\pi}{4}+\sqrt{\frac{144+\pi^2}{16}}}{3} \right |-0+\frac{9}{2}ln\left | 1 \right | }

\displaystyle{f(x)=\frac{\frac{\pi}{4}\sqrt{144+\pi^2}}{8}+\frac{9}{2}ln\left | \frac{\frac{\pi}{4}+\frac{1}{4}\sqrt{144+\pi^2}}{3} \right |+0 }

\displaystyle{f(x)=\frac{\frac{\pi}{4}\sqrt{144+\pi^2}}{8}+\frac{9}{2}ln\left | \frac{\frac{\pi+\sqrt{144+\pi^2}}{4}}{3} \right | }

\displaystyle{f(x)=\frac{\pi\sqrt{144+\pi^2}}{32}+\frac{9}{2}ln\left | \frac{\pi+\sqrt{144+\pi^2}}{12} \right | }

.

PELAJARI LEBIH LANJUT

  1. Integral parsial : yomemimo.com/tugas/47452270
  2. Integral parsial : yomemimo.com/tugas/30673657

.

DETAIL JAWABAN

Kelas : 11

Mapel: Matematika

Bab : Integral Tak Tentu

Kode Kategorisasi: 11.2.10

Semoga dengan pertanyaan yang sudah terjawab oleh diradiradira dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Fri, 30 Jun 23