1. Carilah titik puncak, titik potong sumbu x dan y

Berikut ini adalah pertanyaan dari icaagung58 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

1. Carilah titik puncak, titik potong sumbu x dan y serta gambar grafiknya pada fungsi kuadrat di bawah ini. a) y= 2 + 3x + x² b) y= 2 + 5x + 2x² c) y = 2x² + 8x + 1 d) y = 3x² + 2x - 7 e) y=x²-15 x-7jawabannya​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Soal a)

  • y= 2 + 3x + x², nilai a = 1, b = 3 dan c = 2, koordinat titik puncak adalah (-\frac{3}{2} ,-\frac{1}{4} ) serta titik potong sumbu x adalah ( -2,0) dan (-1,0), titik potong sumbu y adalah (0,2)

Soal b)

  • y= 2 + 5x + 2x², nilai a = 2, b = 5 dan c = 2, koordinat titik puncak adalah (-\frac{5}{4} ,-\frac{9}{8} ) serta titik potong sumbu x adalah ( -2,0) dan (-1/2,0), titik potong sumbu y adalah (0,2).

Soal c)

  • y = 2x² + 8x + 1, nilai a = 2, b = 8 dan c = 1, koordinat titik puncak adalah (-2,-7) serta titik potong sumbu x adalah ( --\frac{8+\sqrt{56} }{8},0) dan (-\frac{8-\sqrt{56} }{8},0), titik potong sumbu y adalah (0,1).

Soal d)

  • y = 3x² + 2x + 7 , nilai a = 3, b = 2 dan c = -7, koordinat titik puncak adalah (-\frac{1}{6},-\frac{22}{3}) serta titik potong sumbu x adalah ( -2,0) dan (-1/3,0), titik potong sumbu y adalah (0,7).

Soal e)

  • y=x²-15 x-7,  nilai a = 1, b = -15 dan c = -7, koordinat titik puncak adalah (-\frac{15}{2},-\frac{253}{4}) serta titik potong sumbu x adalah ( \frac{15+\sqrt{253} }{4},0) dan (\frac{15 -\sqrt{253} }{4},0), titik potong sumbu y adalah (0,-7)

Penjelasan dengan langkah-langkah:

Diketahui :

Persamaan fungsi kuadrat sebagai berikut :

a) y= 2 + 3x + x²

b) y= 2 + 5x + 2x²

c) y = 2x² + 8x + 1

d) y = 3x² + 2x - 7

e) y=x²-15 x-7

Ditanyakan :

  • Carilah titik puncak, titik potong sumbu x dan y

Jawab :

  • Persamaan fungsi kuadrat adalah kalimat matematika yang memiliki satu atau dua veraibel dengan pangkat tertinggi adalah dua serta tanda penghubungnya adalah tanda sama dengan "=".
  • Rumus umum persamaan fungsi kuadratadalahy=ax^{2} +bx+c
  • Ciri-ciri grafik fungsi kuadrat adalah
  1. Kurva berbentuk lengkung, ada yang lengkung ke bawah dan ada yang lengkung ke atas.
  2. Syarat titik potong terhadap sumbu x adalah nilai y = 0
  3. Syarat titik potong terhadap sumbu y adalah nilai x  = 0
  4. Jika ada suatu titik merupakan bagian dari garis kurva fungsi kuadrat maka titik tersebut jika disubstitusi ke persamaan fungsi akan memenuhi.
  5. Rumus mencari titik puncak adalah \frac{-b}{2a} ,-\frac{b^{2-4ac} }{4a}

Analisis Jawaban

Soal a)

  • y= 2 + 3x + x², nilai a = 1, b = 3 dan c = 2, koordinat titik puncak adalah (-\frac{3}{2} ,-\frac{1}{4} ) serta titik potong sumbu x adalah ( -2,0) dan (-1,0), titik potong sumbu y adalah (0,2)

Soal b)

  • y= 2 + 5x + 2x², nilai a = 2, b = 5 dan c = 2, koordinat titik puncak adalah (-\frac{5}{4} ,-\frac{9}{8} ) serta titik potong sumbu x adalah ( -2,0) dan (-1/2,0), titik potong sumbu y adalah (0,2).

Soal c)

  • y = 2x² + 8x + 1, nilai a = 2, b = 8 dan c = 1, koordinat titik puncak adalah (-2,-7) serta titik potong sumbu x adalah ( --\frac{8+\sqrt{56} }{8},0) dan (-\frac{8-\sqrt{56} }{8},0), titik potong sumbu y adalah (0,1).

Soal d)

  • y = 3x² + 2x + 7 , nilai a = 3, b = 2 dan c = -7, koordinat titik puncak adalah (-\frac{1}{6},-\frac{22}{3}) serta titik potong sumbu x adalah ( -2,0) dan (-1/3,0), titik potong sumbu y adalah (0,7).

Soal e)

  • y=x²-15 x-7,  nilai a = 1, b = -15 dan c = -7, koordinat titik puncak adalah (-\frac{15}{2},-\frac{253}{4}) serta titik potong sumbu x adalah ( \frac{15+\sqrt{253} }{4},0) dan (\frac{15 -\sqrt{253} }{4},0), titik potong sumbu y adalah (0,-7)

Pelajari Lebih Lanjut

#BelajarBersamaBrainly

#SPJ1

Semoga dengan pertanyaan yang sudah terjawab oleh ariefikhwanw dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Sat, 04 Feb 23