2^x - 2^y = 1 , 4^x - 4^y =

Berikut ini adalah pertanyaan dari ralouwst pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

2^x - 2^y = 1 , 4^x - 4^y = 5/3 x - y = ?

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawaban:

Untuk menyelesaikan masalah ini, kita dapat menggunakan sifat logaritma untuk menuliskan persamaan-persamaan yang diberikan dalam bentuk yang lebih mudah diolah.

2^x - 2^y = 1

2^x - 2^y = 12^y = 2^x - 1

2^x - 2^y = 12^y = 2^x - 1y = x - 1

2^x - 2^y = 12^y = 2^x - 1y = x - 14^x - 4^y = 5/3

2^x - 2^y = 12^y = 2^x - 1y = x - 14^x - 4^y = 5/34^y = 4^x - 5/3

2^x - 2^y = 12^y = 2^x - 1y = x - 14^x - 4^y = 5/34^y = 4^x - 5/3y = (x - log4(5/3))/log4(4)

Setelah itu, kita dapat menyelesaikan sistem persamaan tersebut dengan menyamakan x - 1 dengan (x - log4(5/3))/log4(4).

x - 1 = (x - log4(5/3))/log4(4)

x - 1 = (x - log4(5/3))/log4(4)x - log4(4) = (x - log4(5/3))/log4(4)

x - 1 = (x - log4(5/3))/log4(4)x - log4(4) = (x - log4(5/3))/log4(4)x = (x - log4(5/3))/log4(4) + log4(4)

Kita dapat menyederhanakan persamaan tersebut dengan menggunakan sifat logaritma.

x = (x - log4(5/3) + log4(5/3))/log4(4) + log4(4)

x = (x - log4(5/3) + log4(5/3))/log4(4) + log4(4)x = (x + log4(5/3))/log4(4) + log4(4)

Setelah itu, kita dapat menyelesaikan persamaan tersebut dengan menggunakan sifat logaritma lainnya.

x = (x + log4(5/3))/log4(4) + log4(4)

x = (x + log4(5/3))/log4(4) + log4(4)x = x/log4(4) + log4(4) + log4(5/3)/log4(4)

x = (x + log4(5/3))/log4(4) + log4(4)x = x/log4(4) + log4(4) + log4(5/3)/log4(4)x = x/log4(4) + log4(4) + log4(5) - log4(3)/log4(4)

x = (x + log4(5/3))/log4(4) + log4(4)x = x/log4(4) + log4(4) + log4(5/3)/log4(4)x = x/log4(4) + log4(4) + log4(5) - log4(3)/log4(4)x = x/log4(4) + log4(5) - log4(3) + log4(4)

x = (x + log4(5/3))/log4(4) + log4(4)x = x/log4(4) + log4(4) + log4(5/3)/log4(4)x = x/log4(4) + log4(4) + log4(5) - log4(3)/log4(4)x = x/log4(4) + log4(5) - log4(3) + log4(4)x = x/log4(4) + log4(5) - log4(3) + 1

x = (x + log4(5/3))/log4(4) + log4(4)x = x/log4(4) + log4(4) + log4(5/3)/log4(4)x = x/log4(4) + log4(4) + log4(5) - log4(3)/log4(4)x = x/log4(4) + log4(5) - log4(3) + log4(4)x = x/log4(4) + log4(5) - log4(3) + 1x = x/log4(4) + log4(5) - log4(3) + 1

x = (x + log4(5/3))/log4(4) + log4(4)x = x/log4(4) + log4(4) + log4(5/3)/log4(4)x = x/log4(4) + log4(4) + log4(5) - log4(3)/log4(4)x = x/log4(4) + log4(5) - log4(3) + log4(4)x = x/log4(4) + log4(5) - log4(3) + 1x = x/log4(4) + log4(5) - log4(3) + 1x = x/1 + log4(5) - log4(3) + 1

x = (x + log4(5/3))/log4(4) + log4(4)x = x/log4(4) + log4(4) + log4(5/3)/log4(4)x = x/log4(4) + log4(4) + log4(5) - log4(3)/log4(4)x = x/log4(4) + log4(5) - log4(3) + log4(4)x = x/log4(4) + log4(5) - log4(3) + 1x = x/log4(4) + log4(5) - log4(3) + 1x = x/1 + log4(5) - log4(3) + 1x = x + log4(5) - log4(3) + 1

Kita dapat menyederhanakan persamaan tersebut dengan menggunakan sifat logaritma lainnya.

x = x + log4(5) - log4(3) + 1

x = x + log4(5) - log4(3) + 1x = x + log4(5/3) + 1

x = x + log4(5) - log4(3) + 1x = x + log4(5/3) + 1x = x + log4(5/3) + log4(4/4)

x = x + log4(5) - log4(3) + 1x = x + log4(5/3) + 1x = x + log4(5/3) + log4(4/4)x = x + log4(5/34/4)

x = x + log4(5) - log4(3) + 1x = x + log4(5/3) + 1x = x + log4(5/3) + log4(4/4)x = x + log4(5/34/4)x = x + log4(5/32^2/2^2)

x = x + log4(5) - log4(3) + 1x = x + log4(5/3) + 1x = x + log4(5/3) + log4(4/4)x = x + log4(5/34/4)x = x + log4(5/32^2/2^2)x = x + log4(5/32^2/2^2)

x = x + log4(5) - log4(3) + 1x = x + log4(5/3) + 1x = x + log4(5/3) + log4(4/4)x = x + log4(5/34/4)x = x + log4(5/32^2/2^2)x = x + log4(5/32^2/2^2)x = x + log4(5/32^2/2^2)

Semoga dengan pertanyaan yang sudah terjawab oleh dimasanandadian dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Thu, 06 Apr 23