Gambarlah grafik fungsi pecah dari f(x) = x-1 / 2x+4,

Berikut ini adalah pertanyaan dari leensitanggang22 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Gambarlah grafik fungsi pecah dari f(x)
= x-1 / 2x+4, x ≠ −2 ​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Gambar grafik fungsi pecah f(x) = x - 1 / 2x + 4, x ≠ −2 ​dapat kamu lihat di lampiran. Perhatikan bahwa asimtotnya terdapat di x = -2.

Penjelasan dengan langkah-langkah

Fungsi yang diberikan dalam soal adalah contoh fungsi rasional. Fungsi rasional adalah fungsi yang berupa, seperti namanya, "rasio" dari dua fungsi. Rasio (sinonim dari pecahan biasa) adalah perbandingan dua nilai, dinyatakan dalam bentuk a/b. Jadi, fungsi rasional adalah fungsi yang berupa perbandingan dua fungsi, dinyatakan dalam bentuk P(x)/Q(x).

Hal spesial yang akan kamu temui dari fungsi rasional adalah bagaimana fungsi tersebut akan menghasilkan asimtot. Asimtot adalah garis lurus yang dicapai oleh sebuah kurva/garis tetapi tidak pernah terpotong oleh kurva/garis tersebut. Asimtot ditentukan dengan mencari nilai untuk variabel fungsi di penyebut yang akan menghasilkan bilangan nol.

Letak asimtot fungsi f(x) yang diberikan adalah sebagai berikut.

Diketahui:

f(x) = x - 1 / 2x + 4

Ditanya:

Di mana letak asimtotnya?

Jawab:

Fungsi 2x + 4 terletak di penyebut sehingga kita perlu mencari nilai x yang membuat fungsi tersebut bernilai nol.

2x + 4 = 0

2x = -4

x = -2

x = -2 adalah letak asimtotnya. Perhatikan di gambar grafik yang diberikan bahwa terdapat garis vertikal (asimtot tegak) di x = -2 yang dicapai oleh fungsi  f(x) = x - 1 / 2x + 4.

Pelajari lebih lanjut

Contoh soal dengan materi fungsi rasional: yomemimo.com/tugas/12228561

#BelajarBersamaBrainly #SPJ1

Gambar grafik fungsi pecah f(x) = x - 1 / 2x + 4, x ≠ −2 ​dapat kamu lihat di lampiran. Perhatikan bahwa asimtotnya terdapat di x = -2.Penjelasan dengan langkah-langkahFungsi yang diberikan dalam soal adalah contoh fungsi rasional. Fungsi rasional adalah fungsi yang berupa, seperti namanya,

Semoga dengan pertanyaan yang sudah terjawab oleh ImEdwin2 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Wed, 01 Feb 23