Berikut ini adalah pertanyaan dari septianisa212008 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
Jawab:
Untuk menyelesaikan masalah ini, kita memerlukan rumus-rumus geometri pada lingkaran.
Rumus-rumus yang akan kita gunakan adalah:
Panjang busur: s = rθ (dalam radian)
Luas juring: Lj = 1/2 r² θ
Luas segitiga dalam lingkaran: Ls = 1/2 r² sin θ
Luas tembereng: Lt = Lj - Ls
Dalam kasus ini, kita diberikan sudut AOB sebesar 60° dan panjang busur AB sebesar 6 cm. Kita juga diasumsikan bahwa O merupakan pusat lingkaran.
Untuk mencari jari-jari lingkaran, kita perlu membagi panjang busur dengan panjang lengkung lingkaran yang sesuai dengan sudut AOB yang diberikan.
Jika sudut AOB dalam derajat, maka kita perlu mengubahnya menjadi radian terlebih dahulu dengan rumus:
θ (rad) = θ (derajat) x π/180
Maka, dalam kasus ini:
θ = 60° x π/180 = π/3 radian
Panjang lengkung lingkaran sesuai dengan sudut AOB sebesar:
s = rθ
6 = r x π/3
r = 6/(π/3) = 6 x 3/π = 18/π
Jadi, jari-jari lingkaran adalah 18/π cm.
a. Untuk mencari luas segitiga AOB, kita dapat menggunakan rumus:
Ls = 1/2 r² sin θ
Dalam kasus ini:
Ls = 1/2 x (18/π)² x sin(60° x π/180) = 81/π cm²
b. Untuk mencari luas juring AOB, kita dapat menggunakan rumus:
Lj = 1/2 r² θ
Dalam kasus ini:
Lj = 1/2 x (18/π)² x π/3 = 27π/π = 27 cm²
c. Untuk mencari luas tembereng, kita dapat menggunakan rumus:
Lt = Lj - Ls
Dalam kasus ini:
Lt = 27 - 81/π ≈ 1.97 cm²
Jadi, luas segitiga AOB adalah 81/π cm², luas juring AOB adalah 27 cm², dan luas tembereng adalah 1.97 cm².
Semoga dengan pertanyaan yang sudah terjawab oleh inyomanputra97 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Tue, 30 May 23