[15/11/2022]5. (Pertanyaan terlampir pada gambar)​

Berikut ini adalah pertanyaan dari Ghiyatsx pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

[15/11/2022]

5. (Pertanyaan terlampir pada gambar)​
[15/11/2022]5. (Pertanyaan terlampir pada gambar)​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Diketahui tan 20° = p +1. Maka nilai trigonometri sin 20°, cos 20°, tan 70°, dan cos 70° ialah

\boxed{\bf{a. \ \sin20^{\circ}=\frac{p+1}{\sqrt{p^{2}+2p+2}}}}

\boxed{\bf{b. \ \cos20^{\circ}=\frac{1}{\sqrt{p^{2}+2p+2}}}}

\boxed{\bf{c. \ \tan70^{\circ}=\frac{1}{p+1}}}

\boxed{\bf{d. \ \cos70^{\circ}=\frac{p+1}{\sqrt{p^{2}+2p+2}}}}

 \:

Trigonometri

Pendahuluan

A.) Definisi

.) Perbandingan Trigonometri

Pada segitiga siku-siku ABC, berlaku :

*Gambar ke-1

\small\mathbf{\left(a.\right)\ \ \sin\alpha=\frac{y}{r}=\frac{de}{mi}}

\small\mathbf{\left(b.\right)\ \ \cos\alpha=\frac{x}{r}=\frac{sa}{mi}}

\small\mathbf{\left(c.\right)\ \ \tan\alpha=\frac{y}{x}=\frac{de}{sa}}

\small\mathbf{\left(d.\right)\ \ \csc\alpha=\frac{1}{\sin\alpha}=\frac{r}{y}}

\small\mathbf{\left(e.\right)\ \ \sec\alpha=\frac{1}{\cos\alpha}=\frac{r}{x}}

\small\mathbf{\left(f.\right)\ \ \cot\alpha=\frac{1}{\tan\alpha}=\frac{y}{x}}

B.) Sudut dan Kuadran

1.) Pembagian Daerah

\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{absis(x)}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{Ordinat(y)}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\end{array}}

2.) Tanda-tanda Fungsi

\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{sin}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\\&&&\\\mathbf{cos}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{tan}&\mathbf{+}&\mathbf{-}&\mathbf{+}&\mathbf{-}\end{array}}

3.) Sudut-sudut Istimewa

\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{0^{\circ}}}&\underline{\mathbf{30^{\circ}}}&\underline{\mathbf{45^{\circ}}}&\underline{\mathbf{60^{\circ}}}\\&&&\\\mathbf{sin}&\mathbf{0}&\mathbf{\frac{1}{2}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}\sqrt{3}}\\&&&\\\mathbf{cos}&\mathbf{1}&\mathbf{\frac{1}{2}\sqrt{3}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}}\\&&&\\\mathbf{tan}&\mathbf{0}&\mathbf{\frac{1}{3}\sqrt{3}}&\mathbf{1}&\mathbf{\sqrt{3}}\end{array}}  \boxed{\begin{array}{c}\underline{\mathbf{90^{\circ}}}\\\\\mathbf{1}\\\\\mathbf{0}\\\\\infty\end{array}}

 \:

 \:

Pembahasan

Diketahui :

\bf{\tan20^{\circ}=p+1}

Ditanya :

a . sin 20°

b. cos 20°

c. tan 70°

d. cos 70°

Jawaban :

\bf{\tan20^{\circ}=p+1}

\to maka

\bf{\tan20^{\circ}=\frac{p+1}{1}}

\bf{\tan a=\frac{de}{sa}}

\tolalu carisisi miringnya

\bf{de=p+1\ dan\ sa=1}

\bf{miring=\sqrt{\left(de\right)^{2}+\left(sa\right)^{2}}}

\bf{miring=\sqrt{\left(p+1\right)^{2}+\left(1\right)^{2}}}

\bf{miring=\sqrt{\left(p^{2}+2p+1\right)+1}}

\bf{miring=\sqrt{p^{2}+2p+2}}

\to isi jawaban

\bf{a.\ \sin20^{\circ}=\frac{de}{mi}}

\boxed{\bf{\sin20^{\circ}=\frac{p+1}{\sqrt{p^{2}+2p+2}}}}

\to

\bf{b.\ \cos20^{\circ}=\frac{sa}{mi}}

\boxed{\bf{\cos20^{\circ}=\frac{1}{\sqrt{p^{2}+2p+2}}}}

\to

\bf{c.\ \tan70^{\circ}=\frac{\sin70}{\cos70}}

bila \bf{\sin60^{\circ}=\cos30^{\circ},\ berarti}

\bf{\tan70^{\circ}=\frac{\cos20^{\circ}}{\sin20^{\circ}}}

\bf{\tan70^{\circ}=\frac{\frac{1}{\sqrt{p^{2}+2p+2}}}{\frac{p+1}{\sqrt{p^{2}+2p+2}}}}

\bf{\tan70^{\circ}=\frac{\frac{1}{\sqrt{p^{2}+2p+2}}\cdot\sqrt{p^{2}+2p+2}}{p+1}}

\boxed{\bf{\tan70^{\circ}=\frac{1}{p+1}}}

\to

\bf{d.\ \cos70^{\circ}=\sin20^{\circ}}

\boxed{\bf{\cos70^{\circ}=\frac{p+1}{\sqrt{p^{2}+2p+2}}}}

 \:

 \:

Pelajari Lebih Lanjut :

 \:

 \:

Detail Jawaban :

Grade : SMA

Kode Kategorisasi : 10.2.6

Kelas : 10

Kode Mapel : 2

Pelajaran : Matematika

Bab : 6

Sub Bab : Bab 6 – Trigonometri Dasar

 \:

Kata Kunci : Trigonometri, tan a, sisi samping, sisi miring, sisi depan.

Diketahui tan 20° = p +1. Maka nilai trigonometri sin 20°, cos 20°, tan 70°, dan cos 70° ialah[tex]\boxed{\bf{a. \ \sin20^{\circ}=\frac{p+1}{\sqrt{p^{2}+2p+2}}}}[/tex][tex]\boxed{\bf{b. \ \cos20^{\circ}=\frac{1}{\sqrt{p^{2}+2p+2}}}}[/tex][tex]\boxed{\bf{c. \ \tan70^{\circ}=\frac{1}{p+1}}}[/tex][tex]\boxed{\bf{d. \ \cos70^{\circ}=\frac{p+1}{\sqrt{p^{2}+2p+2}}}}[/tex][tex] \: [/tex]TrigonometriPendahuluanA.) Definisi	.) Perbandingan TrigonometriPada segitiga siku-siku ABC, berlaku : *Gambar ke-1[tex]\small\mathbf{\left(a.\right)\ \ \sin\alpha=\frac{y}{r}=\frac{de}{mi}} [/tex][tex]\small\mathbf{\left(b.\right)\ \ \cos\alpha=\frac{x}{r}=\frac{sa}{mi}} [/tex][tex]\small\mathbf{\left(c.\right)\ \ \tan\alpha=\frac{y}{x}=\frac{de}{sa}} [/tex][tex]\small\mathbf{\left(d.\right)\ \ \csc\alpha=\frac{1}{\sin\alpha}=\frac{r}{y}}[/tex][tex]\small\mathbf{\left(e.\right)\ \ \sec\alpha=\frac{1}{\cos\alpha}=\frac{r}{x}}[/tex][tex]\small\mathbf{\left(f.\right)\ \ \cot\alpha=\frac{1}{\tan\alpha}=\frac{y}{x}}[/tex]B.) Sudut dan Kuadran1.) Pembagian Daerah [tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{absis(x)}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{Ordinat(y)}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\end{array}}[/tex]2.) Tanda-tanda Fungsi[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{sin}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\\&&&\\\mathbf{cos}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{tan}&\mathbf{+}&\mathbf{-}&\mathbf{+}&\mathbf{-}\end{array}}[/tex]3.) Sudut-sudut Istimewa[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{0^{\circ}}}&\underline{\mathbf{30^{\circ}}}&\underline{\mathbf{45^{\circ}}}&\underline{\mathbf{60^{\circ}}}\\&&&\\\mathbf{sin}&\mathbf{0}&\mathbf{\frac{1}{2}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}\sqrt{3}}\\&&&\\\mathbf{cos}&\mathbf{1}&\mathbf{\frac{1}{2}\sqrt{3}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}}\\&&&\\\mathbf{tan}&\mathbf{0}&\mathbf{\frac{1}{3}\sqrt{3}}&\mathbf{1}&\mathbf{\sqrt{3}}\end{array}} [/tex] [tex] \boxed{\begin{array}{c}\underline{\mathbf{90^{\circ}}}\\\\\mathbf{1}\\\\\mathbf{0}\\\\\infty\end{array}} [/tex][tex] \: [/tex][tex] \: [/tex]PembahasanDiketahui :[tex]\bf{\tan20^{\circ}=p+1}[/tex]Ditanya :a . sin 20°b. cos 20°c. tan 70°d. cos 70°Jawaban :[tex]\bf{\tan20^{\circ}=p+1}[/tex][tex]\to[/tex] maka[tex]\bf{\tan20^{\circ}=\frac{p+1}{1}}[/tex] [tex]\bf{\tan a=\frac{de}{sa}}[/tex][tex]\to[/tex] lalu cari sisi miringnya [tex]\bf{de=p+1\ dan\ sa=1}[/tex][tex]\bf{miring=\sqrt{\left(de\right)^{2}+\left(sa\right)^{2}}}[/tex][tex]\bf{miring=\sqrt{\left(p+1\right)^{2}+\left(1\right)^{2}}}[/tex][tex]\bf{miring=\sqrt{\left(p^{2}+2p+1\right)+1}}[/tex][tex]\bf{miring=\sqrt{p^{2}+2p+2}}[/tex][tex]\to[/tex] isi jawaban[tex]\bf{a.\ \sin20^{\circ}=\frac{de}{mi}}[/tex][tex]\boxed{\bf{\sin20^{\circ}=\frac{p+1}{\sqrt{p^{2}+2p+2}}}}[/tex][tex]\to[/tex][tex]\bf{b.\ \cos20^{\circ}=\frac{sa}{mi}}[/tex][tex]\boxed{\bf{\cos20^{\circ}=\frac{1}{\sqrt{p^{2}+2p+2}}}}[/tex][tex]\to[/tex][tex]\bf{c.\ \tan70^{\circ}=\frac{\sin70}{\cos70}}[/tex]bila [tex]\bf{\sin60^{\circ}=\cos30^{\circ},\ berarti}[/tex][tex]\bf{\tan70^{\circ}=\frac{\cos20^{\circ}}{\sin20^{\circ}}}[/tex][tex]\bf{\tan70^{\circ}=\frac{\frac{1}{\sqrt{p^{2}+2p+2}}}{\frac{p+1}{\sqrt{p^{2}+2p+2}}}}[/tex][tex]\bf{\tan70^{\circ}=\frac{\frac{1}{\sqrt{p^{2}+2p+2}}\cdot\sqrt{p^{2}+2p+2}}{p+1}}[/tex][tex]\boxed{\bf{\tan70^{\circ}=\frac{1}{p+1}}}[/tex][tex]\to[/tex][tex]\bf{d.\ \cos70^{\circ}=\sin20^{\circ}}[/tex][tex]\boxed{\bf{\cos70^{\circ}=\frac{p+1}{\sqrt{p^{2}+2p+2}}}}[/tex][tex] \: [/tex][tex] \: [/tex]Pelajari Lebih Lanjut :Contoh soal mencari sisi samping : https://brainly.co.id/tugas/48680192Nilai dari cos²45° + sin²240° = : https://brainly.co.id/tugas/52094991Jika cos (72,24°) = 1/5. maka sin (17,76°) ialah : https://brainly.co.id/tugas/52659460Berapakah sin(30°) × cos(60°) : https://brainly.co.id/tugas/52206983Jika A+B = 30°, maka Cos A ialah : https://brainly.co.id/tugas/52680527 [tex] \: [/tex][tex] \: [/tex]Detail Jawaban :Grade : SMAKode Kategorisasi : 10.2.6Kelas : 10Kode Mapel : 2Pelajaran : MatematikaBab : 6Sub Bab : Bab 6 – Trigonometri Dasar[tex] \: [/tex]Kata Kunci : Trigonometri, tan a, sisi samping, sisi miring, sisi depan.Diketahui tan 20° = p +1. Maka nilai trigonometri sin 20°, cos 20°, tan 70°, dan cos 70° ialah[tex]\boxed{\bf{a. \ \sin20^{\circ}=\frac{p+1}{\sqrt{p^{2}+2p+2}}}}[/tex][tex]\boxed{\bf{b. \ \cos20^{\circ}=\frac{1}{\sqrt{p^{2}+2p+2}}}}[/tex][tex]\boxed{\bf{c. \ \tan70^{\circ}=\frac{1}{p+1}}}[/tex][tex]\boxed{\bf{d. \ \cos70^{\circ}=\frac{p+1}{\sqrt{p^{2}+2p+2}}}}[/tex][tex] \: [/tex]TrigonometriPendahuluanA.) Definisi	.) Perbandingan TrigonometriPada segitiga siku-siku ABC, berlaku : *Gambar ke-1[tex]\small\mathbf{\left(a.\right)\ \ \sin\alpha=\frac{y}{r}=\frac{de}{mi}} [/tex][tex]\small\mathbf{\left(b.\right)\ \ \cos\alpha=\frac{x}{r}=\frac{sa}{mi}} [/tex][tex]\small\mathbf{\left(c.\right)\ \ \tan\alpha=\frac{y}{x}=\frac{de}{sa}} [/tex][tex]\small\mathbf{\left(d.\right)\ \ \csc\alpha=\frac{1}{\sin\alpha}=\frac{r}{y}}[/tex][tex]\small\mathbf{\left(e.\right)\ \ \sec\alpha=\frac{1}{\cos\alpha}=\frac{r}{x}}[/tex][tex]\small\mathbf{\left(f.\right)\ \ \cot\alpha=\frac{1}{\tan\alpha}=\frac{y}{x}}[/tex]B.) Sudut dan Kuadran1.) Pembagian Daerah [tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{absis(x)}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{Ordinat(y)}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\end{array}}[/tex]2.) Tanda-tanda Fungsi[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{sin}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\\&&&\\\mathbf{cos}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{tan}&\mathbf{+}&\mathbf{-}&\mathbf{+}&\mathbf{-}\end{array}}[/tex]3.) Sudut-sudut Istimewa[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{0^{\circ}}}&\underline{\mathbf{30^{\circ}}}&\underline{\mathbf{45^{\circ}}}&\underline{\mathbf{60^{\circ}}}\\&&&\\\mathbf{sin}&\mathbf{0}&\mathbf{\frac{1}{2}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}\sqrt{3}}\\&&&\\\mathbf{cos}&\mathbf{1}&\mathbf{\frac{1}{2}\sqrt{3}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}}\\&&&\\\mathbf{tan}&\mathbf{0}&\mathbf{\frac{1}{3}\sqrt{3}}&\mathbf{1}&\mathbf{\sqrt{3}}\end{array}} [/tex] [tex] \boxed{\begin{array}{c}\underline{\mathbf{90^{\circ}}}\\\\\mathbf{1}\\\\\mathbf{0}\\\\\infty\end{array}} [/tex][tex] \: [/tex][tex] \: [/tex]PembahasanDiketahui :[tex]\bf{\tan20^{\circ}=p+1}[/tex]Ditanya :a . sin 20°b. cos 20°c. tan 70°d. cos 70°Jawaban :[tex]\bf{\tan20^{\circ}=p+1}[/tex][tex]\to[/tex] maka[tex]\bf{\tan20^{\circ}=\frac{p+1}{1}}[/tex] [tex]\bf{\tan a=\frac{de}{sa}}[/tex][tex]\to[/tex] lalu cari sisi miringnya [tex]\bf{de=p+1\ dan\ sa=1}[/tex][tex]\bf{miring=\sqrt{\left(de\right)^{2}+\left(sa\right)^{2}}}[/tex][tex]\bf{miring=\sqrt{\left(p+1\right)^{2}+\left(1\right)^{2}}}[/tex][tex]\bf{miring=\sqrt{\left(p^{2}+2p+1\right)+1}}[/tex][tex]\bf{miring=\sqrt{p^{2}+2p+2}}[/tex][tex]\to[/tex] isi jawaban[tex]\bf{a.\ \sin20^{\circ}=\frac{de}{mi}}[/tex][tex]\boxed{\bf{\sin20^{\circ}=\frac{p+1}{\sqrt{p^{2}+2p+2}}}}[/tex][tex]\to[/tex][tex]\bf{b.\ \cos20^{\circ}=\frac{sa}{mi}}[/tex][tex]\boxed{\bf{\cos20^{\circ}=\frac{1}{\sqrt{p^{2}+2p+2}}}}[/tex][tex]\to[/tex][tex]\bf{c.\ \tan70^{\circ}=\frac{\sin70}{\cos70}}[/tex]bila [tex]\bf{\sin60^{\circ}=\cos30^{\circ},\ berarti}[/tex][tex]\bf{\tan70^{\circ}=\frac{\cos20^{\circ}}{\sin20^{\circ}}}[/tex][tex]\bf{\tan70^{\circ}=\frac{\frac{1}{\sqrt{p^{2}+2p+2}}}{\frac{p+1}{\sqrt{p^{2}+2p+2}}}}[/tex][tex]\bf{\tan70^{\circ}=\frac{\frac{1}{\sqrt{p^{2}+2p+2}}\cdot\sqrt{p^{2}+2p+2}}{p+1}}[/tex][tex]\boxed{\bf{\tan70^{\circ}=\frac{1}{p+1}}}[/tex][tex]\to[/tex][tex]\bf{d.\ \cos70^{\circ}=\sin20^{\circ}}[/tex][tex]\boxed{\bf{\cos70^{\circ}=\frac{p+1}{\sqrt{p^{2}+2p+2}}}}[/tex][tex] \: [/tex][tex] \: [/tex]Pelajari Lebih Lanjut :Contoh soal mencari sisi samping : https://brainly.co.id/tugas/48680192Nilai dari cos²45° + sin²240° = : https://brainly.co.id/tugas/52094991Jika cos (72,24°) = 1/5. maka sin (17,76°) ialah : https://brainly.co.id/tugas/52659460Berapakah sin(30°) × cos(60°) : https://brainly.co.id/tugas/52206983Jika A+B = 30°, maka Cos A ialah : https://brainly.co.id/tugas/52680527 [tex] \: [/tex][tex] \: [/tex]Detail Jawaban :Grade : SMAKode Kategorisasi : 10.2.6Kelas : 10Kode Mapel : 2Pelajaran : MatematikaBab : 6Sub Bab : Bab 6 – Trigonometri Dasar[tex] \: [/tex]Kata Kunci : Trigonometri, tan a, sisi samping, sisi miring, sisi depan.Diketahui tan 20° = p +1. Maka nilai trigonometri sin 20°, cos 20°, tan 70°, dan cos 70° ialah[tex]\boxed{\bf{a. \ \sin20^{\circ}=\frac{p+1}{\sqrt{p^{2}+2p+2}}}}[/tex][tex]\boxed{\bf{b. \ \cos20^{\circ}=\frac{1}{\sqrt{p^{2}+2p+2}}}}[/tex][tex]\boxed{\bf{c. \ \tan70^{\circ}=\frac{1}{p+1}}}[/tex][tex]\boxed{\bf{d. \ \cos70^{\circ}=\frac{p+1}{\sqrt{p^{2}+2p+2}}}}[/tex][tex] \: [/tex]TrigonometriPendahuluanA.) Definisi	.) Perbandingan TrigonometriPada segitiga siku-siku ABC, berlaku : *Gambar ke-1[tex]\small\mathbf{\left(a.\right)\ \ \sin\alpha=\frac{y}{r}=\frac{de}{mi}} [/tex][tex]\small\mathbf{\left(b.\right)\ \ \cos\alpha=\frac{x}{r}=\frac{sa}{mi}} [/tex][tex]\small\mathbf{\left(c.\right)\ \ \tan\alpha=\frac{y}{x}=\frac{de}{sa}} [/tex][tex]\small\mathbf{\left(d.\right)\ \ \csc\alpha=\frac{1}{\sin\alpha}=\frac{r}{y}}[/tex][tex]\small\mathbf{\left(e.\right)\ \ \sec\alpha=\frac{1}{\cos\alpha}=\frac{r}{x}}[/tex][tex]\small\mathbf{\left(f.\right)\ \ \cot\alpha=\frac{1}{\tan\alpha}=\frac{y}{x}}[/tex]B.) Sudut dan Kuadran1.) Pembagian Daerah [tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{absis(x)}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{Ordinat(y)}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\end{array}}[/tex]2.) Tanda-tanda Fungsi[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{I}}&\underline{\mathbf{II}}&\underline{\mathbf{III}}&\underline{\mathbf{IV}}\\&&&\\\mathbf{sin}&\mathbf{+}&\mathbf{+}&\mathbf{-}&\mathbf{-}\\&&&\\\mathbf{cos}&\mathbf{+}&\mathbf{-}&\mathbf{-}&\mathbf{+}\\&&&\\\mathbf{tan}&\mathbf{+}&\mathbf{-}&\mathbf{+}&\mathbf{-}\end{array}}[/tex]3.) Sudut-sudut Istimewa[tex]\boxed{\begin{array}{c|c|c|c|c}\underline{\mathbf{Kuadran}}&\underline{\mathbf{0^{\circ}}}&\underline{\mathbf{30^{\circ}}}&\underline{\mathbf{45^{\circ}}}&\underline{\mathbf{60^{\circ}}}\\&&&\\\mathbf{sin}&\mathbf{0}&\mathbf{\frac{1}{2}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}\sqrt{3}}\\&&&\\\mathbf{cos}&\mathbf{1}&\mathbf{\frac{1}{2}\sqrt{3}}&\mathbf{\frac{1}{2}\sqrt{2}}&\mathbf{\frac{1}{2}}\\&&&\\\mathbf{tan}&\mathbf{0}&\mathbf{\frac{1}{3}\sqrt{3}}&\mathbf{1}&\mathbf{\sqrt{3}}\end{array}} [/tex] [tex] \boxed{\begin{array}{c}\underline{\mathbf{90^{\circ}}}\\\\\mathbf{1}\\\\\mathbf{0}\\\\\infty\end{array}} [/tex][tex] \: [/tex][tex] \: [/tex]PembahasanDiketahui :[tex]\bf{\tan20^{\circ}=p+1}[/tex]Ditanya :a . sin 20°b. cos 20°c. tan 70°d. cos 70°Jawaban :[tex]\bf{\tan20^{\circ}=p+1}[/tex][tex]\to[/tex] maka[tex]\bf{\tan20^{\circ}=\frac{p+1}{1}}[/tex] [tex]\bf{\tan a=\frac{de}{sa}}[/tex][tex]\to[/tex] lalu cari sisi miringnya [tex]\bf{de=p+1\ dan\ sa=1}[/tex][tex]\bf{miring=\sqrt{\left(de\right)^{2}+\left(sa\right)^{2}}}[/tex][tex]\bf{miring=\sqrt{\left(p+1\right)^{2}+\left(1\right)^{2}}}[/tex][tex]\bf{miring=\sqrt{\left(p^{2}+2p+1\right)+1}}[/tex][tex]\bf{miring=\sqrt{p^{2}+2p+2}}[/tex][tex]\to[/tex] isi jawaban[tex]\bf{a.\ \sin20^{\circ}=\frac{de}{mi}}[/tex][tex]\boxed{\bf{\sin20^{\circ}=\frac{p+1}{\sqrt{p^{2}+2p+2}}}}[/tex][tex]\to[/tex][tex]\bf{b.\ \cos20^{\circ}=\frac{sa}{mi}}[/tex][tex]\boxed{\bf{\cos20^{\circ}=\frac{1}{\sqrt{p^{2}+2p+2}}}}[/tex][tex]\to[/tex][tex]\bf{c.\ \tan70^{\circ}=\frac{\sin70}{\cos70}}[/tex]bila [tex]\bf{\sin60^{\circ}=\cos30^{\circ},\ berarti}[/tex][tex]\bf{\tan70^{\circ}=\frac{\cos20^{\circ}}{\sin20^{\circ}}}[/tex][tex]\bf{\tan70^{\circ}=\frac{\frac{1}{\sqrt{p^{2}+2p+2}}}{\frac{p+1}{\sqrt{p^{2}+2p+2}}}}[/tex][tex]\bf{\tan70^{\circ}=\frac{\frac{1}{\sqrt{p^{2}+2p+2}}\cdot\sqrt{p^{2}+2p+2}}{p+1}}[/tex][tex]\boxed{\bf{\tan70^{\circ}=\frac{1}{p+1}}}[/tex][tex]\to[/tex][tex]\bf{d.\ \cos70^{\circ}=\sin20^{\circ}}[/tex][tex]\boxed{\bf{\cos70^{\circ}=\frac{p+1}{\sqrt{p^{2}+2p+2}}}}[/tex][tex] \: [/tex][tex] \: [/tex]Pelajari Lebih Lanjut :Contoh soal mencari sisi samping : https://brainly.co.id/tugas/48680192Nilai dari cos²45° + sin²240° = : https://brainly.co.id/tugas/52094991Jika cos (72,24°) = 1/5. maka sin (17,76°) ialah : https://brainly.co.id/tugas/52659460Berapakah sin(30°) × cos(60°) : https://brainly.co.id/tugas/52206983Jika A+B = 30°, maka Cos A ialah : https://brainly.co.id/tugas/52680527 [tex] \: [/tex][tex] \: [/tex]Detail Jawaban :Grade : SMAKode Kategorisasi : 10.2.6Kelas : 10Kode Mapel : 2Pelajaran : MatematikaBab : 6Sub Bab : Bab 6 – Trigonometri Dasar[tex] \: [/tex]Kata Kunci : Trigonometri, tan a, sisi samping, sisi miring, sisi depan.

Semoga dengan pertanyaan yang sudah terjawab oleh Sinogen dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Mon, 13 Feb 23