Diberikan system persamaan sebagai berikut. x + 3y + z

Berikut ini adalah pertanyaan dari bagusharis pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Diberikan system persamaan sebagai berikut. x + 3y + z = 0 3x - 2y - z = 5 2 + y + 4z = -7 Nilai dari x – y + z adalah … .​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawab:

Untuk menyelesaikan sistem persamaan ini, dapat menggunakan metode eliminasi atau substitusi. Berikut adalah penyelesaian menggunakan metode substitusi:

Dari persamaan pertama, dapat diperoleh x dalam bentuk:

x = -3y - z

Substitusikan x ke dalam persamaan kedua:

3x - 2y - z = 5

3(-3y - z) - 2y - z = 5

-9y - 3z - 2y - z = 5

-11y - 4z = 5 (1)

Substitusikan x ke dalam persamaan ketiga:

2x + y + 4z = -7

2(-3y - z) + y + 4z = -7

-6y - 2z + y + 4z = -7

-5y + 2z = -7 (2)

Dari persamaan (1), dapat diperoleh:

11y = -5z - 5

y = (-5/11)z - 5/11

Substitusikan y ke dalam persamaan (2):

-5(-5/11)z - 2z = -7

25/11z - 2z = -7

(25/11 - 22/11)z = -7

z = 77/3

Substitusikan z ke dalam persamaan (1):

-11y - 4(77/3) = 5

-11y = 5 + 308/3

-11y = 323/3

y = -29/3

Substitusikan y dan z ke dalam persamaan untuk x:

x = -3y - z

x = -3(-29/3) - 77/3

x = 20

Maka, nilai dari x - y + z adalah:

x - y + z = 20 - (-29/3) + 77/3

x - y + z = 74/3

Semoga dengan pertanyaan yang sudah terjawab oleh inyomanputra97 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Wed, 31 May 23