Hasil dari [tex]\displaystyle \csc^2 \frac{\pi}{7}+\csc^2 \frac{2\pi}{7}+\csc^2 \frac{3\pi}{7}[/tex] yaitu ...

Berikut ini adalah pertanyaan dari syakhayaz pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Hasil dari \displaystyle \csc^2 \frac{\pi}{7}+\csc^2 \frac{2\pi}{7}+\csc^2 \frac{3\pi}{7} yaitu ...

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawab:
= 8
(Ya, delapan.)

Penjelasan dengan langkah-langkah:
Soal ini bikin puyeng kepalaku
\displaystyle\tt csc^2(x)=\frac{1}{sin^2(x)}=\frac{2}{2sin^2(x)}\\\\=\frac{2}{sin^2(x)+sin^2(x)}\\\\=\frac{2}{sin^2(x)+cos^2(x)-cos^2(x)+sin^2(x)}\\\\=\frac{2}{sin^2(x)+cos^2(x)-(cos^2(x)-sin^2(x))}\\\\\because sin^2(x)+cos^2(x)=1,~~cos^2(x)-sin^2(x)=cos(2x)\therefore\\\\=\frac{2}{1-cos(2x)}

\displaystyle\tt x=\frac{\pi}{7}~,~\frac{2\pi}{7}~,~\frac{3\pi}{7}\\\\2x=\frac{2\pi}{7}~,~\frac{4\pi}{7}~,~\frac{6\pi}{7}

\displaystyle \tt p=cos\left(\frac{2\pi}{7}\right)\\\\q=cos\left(\frac{4\pi}{7}\right)\\\\r=cos\left(\frac{6\pi}{7}\right)

Oleh karena itu hasil dari
\displaystyle\tt csc^2\left(\frac{\pi}{7}\right)+csc^2\left(\frac{2\pi}{7}\right)+csc^2\left(\frac{3\pi}{7}\right)\\\\=\frac{2}{1-cos(2\left(\frac{\pi}{7}\right))}+\frac{2}{1-cos(2\left(\frac{2\pi}{7}\right))}+\frac{2}{1-cos(2\left(3\frac{\pi}{7}\right))}\\\\=\frac{2}{1-cos(\frac{2\pi}{7})}+\frac{2}{1-cos(\frac{4\pi}{7})}+\frac{2}{1-cos(\frac{6\pi}{7})}\\\\=\frac{2}{1-p}+\frac{2}{1-q}+\frac{2}{1-r}\\\\=2\left(\frac{1}{1-p}+\frac{1}{1-q}+\frac{1}{1-r}\right)
Maka sesuai KPK penyebut, disederhanakan
\displaystyle\tt=2\left(\frac{-2(p+q+r)+(pq+pr+qr)+3}{1-(p+q+r)+(pq+pr+qr)-pqr}\right)

Masih kuat? Masih!
Cari nilai pq + pr + qr
\tt =cos\left(\frac{2\pi}{7}\right)cos\left(\frac{4\pi}{7}\right)+cos\left(\frac{2\pi}{7}\right)cos\left(\frac{6\pi}{7}\right)+cos\left(\frac{4\pi}{7}\right)cos\left(\frac{6\pi}{7}\right)\\\\\because cos(a)cos(b)=\frac{1}{2}(cos(a-b)+(cos(a+b))\therefore\\\\=\frac{1}{2}(cos\left(\frac{2\pi}{7}-\frac{4\pi}{7}\right)+cos\left(\frac{2\pi}{7}+\frac{4\pi}{7}\right)+cos\left(\frac{2\pi}{7}-\frac{6\pi}{7}\right)+cos\left(\frac{2\pi}{7}+\frac{6\pi}{7}\right)
\tt cos\left(\frac{4\pi}{7}-\frac{6\pi}{7}\right)+cos\left(\frac{4\pi}{7}+\frac{6\pi}{7}\right)\\=\frac{1}{2}(cos(\frac{2\pi}{7})+cos(\frac{6\pi}{7})+cos(\frac{4\pi}{7})+cos(\frac{8\pi}{7})+cos(\frac{2\pi}{7})+cos(\frac{10\pi}{7}))\\=\frac{1}{2}(cos(\frac{2\pi}{7})+cos(\frac{6\pi}{7})+cos(\frac{4\pi}{7})+cos(2\pi-\frac{8\pi}{7})+cos(\frac{2\pi}{7})+cos(2\pi-\frac{10\pi}{7}))
\tt =\frac{1}{2}(cos(\frac{2\pi}{7})+cos(\frac{6\pi}{7})+cos(\frac{4\pi}{7})+cos(\frac{14\pi-8\pi}{7})+cos(\frac{2\pi}{7})+cos(\frac{14\pi-10\pi}{7}))\\=\frac{1}{2}(cos(\frac{2\pi}{7})+cos(\frac{6\pi}{7})+cos(\frac{4\pi}{7})+cos(\frac{6\pi}{7})+cos(\frac{2\pi}{7})+cos(\frac{4\pi}{7}))\\=\frac{1}{2}(2(cos(\frac{2\pi}{7})+cos(\frac{4\pi}{7})+cos(\frac{6\pi}{7})))\\=\frac{1}{2}(2(p+q+r))=p+q+r
pq + pr + qr = p + q + r

Maka
\displaystyle\tt2\left(\frac{-2(p+q+r)+(pq+pr+qr)+3}{1-(p+q+r)+(pq+pr+qr)-pqr}\right)\\\\=2\left(\frac{-2(p+q+r)+(p+q+r)+3}{1-(p+q+r)+(p+q+r)-pqr}\right)\\\\=\large\boxed{\bf 2\left(\frac{-(p+q+r)+3}{1-pqr}\right)}~~yg~~dicari~~nilainya

Cari nilai p + q + r

\tt \displaystyle =cos\left(\frac{2\pi}{7}\right)+cos\left(\frac{4\pi}{7}\right)+cos\left(\frac{6\pi}{7}\right)\\\\=\left(cos\left(\frac{2\pi}{7}\right)+cos\left(\frac{4\pi}{7}\right)+cos\left(\frac{6\pi}{7}\right)\right)\left(\frac{2sin\left(\frac{\pi}{7}\right)}{2sin\left(\frac{\pi}{7}\right)}\right)
Karena 2sin(a)cos(b) = sin(a+b)+sin(a-b) maka
\displaystyle\tt=\frac{sin\left(\not \frac{3\pi}{7}\right)+sin\left(-\frac{\pi}{7}\right)+\not sin\left(\frac{5\pi}{7}\right)+\not sin\left(-\frac{3\pi}{7}\right)+sin\left(\frac{\not7\pi}{\not7}\right)+\not sin\left(-\frac{5\pi}{7}\right)}{2sin\left(\frac{\pi}{7}\right)}
sin π = sin 0 = 0
\displaystyle\tt=\frac{-sin\left(\frac{\pi}{7}\right)}{2sin\left(\frac{\pi}{7}\right)}=-\frac{1}{2}
\large\boxed{\tt~p+q+r=-\frac{1}{2}~}
Sedangkan jumlah karakter maksimum adalah 5000
jadi lanjutannya ada di gambar . . .

Jawab:= 8(Ya, delapan.) Penjelasan dengan langkah-langkah:Soal ini bikin puyeng kepalaku[tex]\displaystyle\tt csc^2(x)=\frac{1}{sin^2(x)}=\frac{2}{2sin^2(x)}\\\\=\frac{2}{sin^2(x)+sin^2(x)}\\\\=\frac{2}{sin^2(x)+cos^2(x)-cos^2(x)+sin^2(x)}\\\\=\frac{2}{sin^2(x)+cos^2(x)-(cos^2(x)-sin^2(x))}\\\\\because sin^2(x)+cos^2(x)=1,~~cos^2(x)-sin^2(x)=cos(2x)\therefore\\\\=\frac{2}{1-cos(2x)}[/tex][tex]\displaystyle\tt x=\frac{\pi}{7}~,~\frac{2\pi}{7}~,~\frac{3\pi}{7}\\\\2x=\frac{2\pi}{7}~,~\frac{4\pi}{7}~,~\frac{6\pi}{7}[/tex][tex]\displaystyle \tt p=cos\left(\frac{2\pi}{7}\right)\\\\q=cos\left(\frac{4\pi}{7}\right)\\\\r=cos\left(\frac{6\pi}{7}\right)[/tex]Oleh karena itu hasil dari[tex]\displaystyle\tt csc^2\left(\frac{\pi}{7}\right)+csc^2\left(\frac{2\pi}{7}\right)+csc^2\left(\frac{3\pi}{7}\right)\\\\=\frac{2}{1-cos(2\left(\frac{\pi}{7}\right))}+\frac{2}{1-cos(2\left(\frac{2\pi}{7}\right))}+\frac{2}{1-cos(2\left(3\frac{\pi}{7}\right))}\\\\=\frac{2}{1-cos(\frac{2\pi}{7})}+\frac{2}{1-cos(\frac{4\pi}{7})}+\frac{2}{1-cos(\frac{6\pi}{7})}\\\\=\frac{2}{1-p}+\frac{2}{1-q}+\frac{2}{1-r}\\\\=2\left(\frac{1}{1-p}+\frac{1}{1-q}+\frac{1}{1-r}\right)[/tex]Maka sesuai KPK penyebut, disederhanakan[tex]\displaystyle\tt=2\left(\frac{-2(p+q+r)+(pq+pr+qr)+3}{1-(p+q+r)+(pq+pr+qr)-pqr}\right)[/tex]Masih kuat? Masih!Cari nilai pq + pr + qr[tex]\tt =cos\left(\frac{2\pi}{7}\right)cos\left(\frac{4\pi}{7}\right)+cos\left(\frac{2\pi}{7}\right)cos\left(\frac{6\pi}{7}\right)+cos\left(\frac{4\pi}{7}\right)cos\left(\frac{6\pi}{7}\right)\\\\\because cos(a)cos(b)=\frac{1}{2}(cos(a-b)+(cos(a+b))\therefore\\\\=\frac{1}{2}(cos\left(\frac{2\pi}{7}-\frac{4\pi}{7}\right)+cos\left(\frac{2\pi}{7}+\frac{4\pi}{7}\right)+cos\left(\frac{2\pi}{7}-\frac{6\pi}{7}\right)+cos\left(\frac{2\pi}{7}+\frac{6\pi}{7}\right)[/tex][tex]\tt cos\left(\frac{4\pi}{7}-\frac{6\pi}{7}\right)+cos\left(\frac{4\pi}{7}+\frac{6\pi}{7}\right)\\=\frac{1}{2}(cos(\frac{2\pi}{7})+cos(\frac{6\pi}{7})+cos(\frac{4\pi}{7})+cos(\frac{8\pi}{7})+cos(\frac{2\pi}{7})+cos(\frac{10\pi}{7}))\\=\frac{1}{2}(cos(\frac{2\pi}{7})+cos(\frac{6\pi}{7})+cos(\frac{4\pi}{7})+cos(2\pi-\frac{8\pi}{7})+cos(\frac{2\pi}{7})+cos(2\pi-\frac{10\pi}{7}))[/tex][tex]\tt =\frac{1}{2}(cos(\frac{2\pi}{7})+cos(\frac{6\pi}{7})+cos(\frac{4\pi}{7})+cos(\frac{14\pi-8\pi}{7})+cos(\frac{2\pi}{7})+cos(\frac{14\pi-10\pi}{7}))\\=\frac{1}{2}(cos(\frac{2\pi}{7})+cos(\frac{6\pi}{7})+cos(\frac{4\pi}{7})+cos(\frac{6\pi}{7})+cos(\frac{2\pi}{7})+cos(\frac{4\pi}{7}))\\=\frac{1}{2}(2(cos(\frac{2\pi}{7})+cos(\frac{4\pi}{7})+cos(\frac{6\pi}{7})))\\=\frac{1}{2}(2(p+q+r))=p+q+r[/tex]pq + pr + qr = p + q + rMaka[tex]\displaystyle\tt2\left(\frac{-2(p+q+r)+(pq+pr+qr)+3}{1-(p+q+r)+(pq+pr+qr)-pqr}\right)\\\\=2\left(\frac{-2(p+q+r)+(p+q+r)+3}{1-(p+q+r)+(p+q+r)-pqr}\right)\\\\=\large\boxed{\bf 2\left(\frac{-(p+q+r)+3}{1-pqr}\right)}~~yg~~dicari~~nilainya[/tex]Cari nilai p + q + r[tex]\tt \displaystyle =cos\left(\frac{2\pi}{7}\right)+cos\left(\frac{4\pi}{7}\right)+cos\left(\frac{6\pi}{7}\right)\\\\=\left(cos\left(\frac{2\pi}{7}\right)+cos\left(\frac{4\pi}{7}\right)+cos\left(\frac{6\pi}{7}\right)\right)\left(\frac{2sin\left(\frac{\pi}{7}\right)}{2sin\left(\frac{\pi}{7}\right)}\right)[/tex]Karena 2sin(a)cos(b) = sin(a+b)+sin(a-b) maka[tex]\displaystyle\tt=\frac{sin\left(\not \frac{3\pi}{7}\right)+sin\left(-\frac{\pi}{7}\right)+\not sin\left(\frac{5\pi}{7}\right)+\not sin\left(-\frac{3\pi}{7}\right)+sin\left(\frac{\not7\pi}{\not7}\right)+\not sin\left(-\frac{5\pi}{7}\right)}{2sin\left(\frac{\pi}{7}\right)}[/tex]sin π = sin 0 = 0[tex]\displaystyle\tt=\frac{-sin\left(\frac{\pi}{7}\right)}{2sin\left(\frac{\pi}{7}\right)}=-\frac{1}{2}[/tex][tex]\large\boxed{\tt~p+q+r=-\frac{1}{2}~}[/tex]Sedangkan jumlah karakter maksimum adalah 5000jadi lanjutannya ada di gambar . . .

Semoga dengan pertanyaan yang sudah terjawab oleh xcvi dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Sat, 18 Mar 23