Berikut ini adalah pertanyaan dari Xxcrty4 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas
✧❀⌨︎QUIZ⌨︎❀✧![1.) \bold{\boxed{solve\:for\:x,\:\:\sqrt{x+15}+\sqrt{x}=15}}\\\\2.)\bold{\boxed{gcf\:\:35y^4,\:\:14y^4,\:\:63y^4}}\\\\3.)\bold{\boxed{implicit\:derivative\:\frac{dy}{dx},\:\:\left(x-y\right)^2=x+y-1}} 1.) \bold{\boxed{solve\:for\:x,\:\:\sqrt{x+15}+\sqrt{x}=15}}\\\\2.)\bold{\boxed{gcf\:\:35y^4,\:\:14y^4,\:\:63y^4}}\\\\3.)\bold{\boxed{implicit\:derivative\:\frac{dy}{dx},\:\:\left(x-y\right)^2=x+y-1}}](https://tex.z-dn.net/?f=1.%29%20%5Cbold%7B%5Cboxed%7Bsolve%5C%3Afor%5C%3Ax%2C%5C%3A%5C%3A%5Csqrt%7Bx%2B15%7D%2B%5Csqrt%7Bx%7D%3D15%7D%7D%5C%5C%5C%5C2.%29%5Cbold%7B%5Cboxed%7Bgcf%5C%3A%5C%3A35y%5E4%2C%5C%3A%5C%3A14y%5E4%2C%5C%3A%5C%3A63y%5E4%7D%7D%5C%5C%5C%5C3.%29%5Cbold%7B%5Cboxed%7Bimplicit%5C%3Aderivative%5C%3A%5Cfrac%7Bdy%7D%7Bdx%7D%2C%5C%3A%5C%3A%5Cleft%28x-y%5Cright%29%5E2%3Dx%2By-1%7D%7D)
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
Jawaban:
1. x = 49
2. jika dikali hasilnya = 30.870y¹²
jika ditambah hasilnya = 112y⁴
3.
Penjelasan dengan langkah-langkah:
cara nya ada digambar
makasih
semoga membantu
![✏JAWABAN:1. Solve For x =[tex] \sqrt{x + 15} + \sqrt{x} = 15[/tex][tex] \sqrt{x + 15} = 15 - \sqrt{x} [/tex][tex]x + 15 = 225 - 30 \sqrt{x + x} [/tex][tex]30 \sqrt{x} = 225 - 15[/tex][tex]30 \sqrt{x} = 210[/tex][tex] \sqrt{ x } = 210 \div 30[/tex][tex] \sqrt{x} = 7[/tex][tex]x = 49[/tex]_______2. GCF =[tex]35y {}^{4} = 35 {}^{4} \times y[/tex][tex]14 {y}^{4} = 14 {}^{4} \times y[/tex][tex]63 {y}^{4} = 63 {}^{4} \times y[/tex][tex] = 14 {}^{4} \times y[/tex]_______3. Derivative =[tex](x - y) {}^{2} = x + y - 1[/tex][tex]\frac{d}{dx} ((x - y) {}^{2} ) = \frac{d}{dx} (x) + \frac{d}{dx} (y) - \frac{d}{dx} (1)[/tex][tex] \frac{d}{dg} ( {g}^{2} ) \times \frac{d}{dx} (x - y) = \frac{d}{dx} (x) + \frac{d}{dx} (y) - 0[/tex][tex]2g \times (1 - \frac{d}{dx} (y)) = 1 + \frac{d}{dy} (y) \times \frac{dy}{dx} [/tex][tex]2(x + y) \times (1 - \frac{d}{dx} (y)) = 1 + 1 \times \frac{dy}{dx} [/tex][tex]2x - 2x \times \frac{d}{dx} (y) - 2y + 2x \times \frac{d}{dx} (y) = 1 \times \frac{dy}{dx}[/tex][tex]2x - 2x \times \frac{d}{dy} (y) \times \frac{dy}{dx} - 2y + 2y \times \frac{d}{dy} (y) \times \frac{dy}{dx} = 1 + \frac{dy}{dx} [/tex][tex] - 2x \times \frac{dy}{dx} + 2y \times \frac{dy}{dx} - \frac{dy}{dx} = 1 - 2x + 2y[/tex][tex]( - 2 x + 2y - 1) \times \frac{dy}{dx} = 1 - 2x + 2y[/tex][tex] \frac{dy}{dx} = \frac{1 - 2x + 2y}{ - 2x + 2y - 1} [/tex]](https://id-static.z-dn.net/files/d51/e125a1b372cae1be863320e6573efb0c.jpg)
![✏JAWABAN:1. Solve For x =[tex] \sqrt{x + 15} + \sqrt{x} = 15[/tex][tex] \sqrt{x + 15} = 15 - \sqrt{x} [/tex][tex]x + 15 = 225 - 30 \sqrt{x + x} [/tex][tex]30 \sqrt{x} = 225 - 15[/tex][tex]30 \sqrt{x} = 210[/tex][tex] \sqrt{ x } = 210 \div 30[/tex][tex] \sqrt{x} = 7[/tex][tex]x = 49[/tex]_______2. GCF =[tex]35y {}^{4} = 35 {}^{4} \times y[/tex][tex]14 {y}^{4} = 14 {}^{4} \times y[/tex][tex]63 {y}^{4} = 63 {}^{4} \times y[/tex][tex] = 14 {}^{4} \times y[/tex]_______3. Derivative =[tex](x - y) {}^{2} = x + y - 1[/tex][tex]\frac{d}{dx} ((x - y) {}^{2} ) = \frac{d}{dx} (x) + \frac{d}{dx} (y) - \frac{d}{dx} (1)[/tex][tex] \frac{d}{dg} ( {g}^{2} ) \times \frac{d}{dx} (x - y) = \frac{d}{dx} (x) + \frac{d}{dx} (y) - 0[/tex][tex]2g \times (1 - \frac{d}{dx} (y)) = 1 + \frac{d}{dy} (y) \times \frac{dy}{dx} [/tex][tex]2(x + y) \times (1 - \frac{d}{dx} (y)) = 1 + 1 \times \frac{dy}{dx} [/tex][tex]2x - 2x \times \frac{d}{dx} (y) - 2y + 2x \times \frac{d}{dx} (y) = 1 \times \frac{dy}{dx}[/tex][tex]2x - 2x \times \frac{d}{dy} (y) \times \frac{dy}{dx} - 2y + 2y \times \frac{d}{dy} (y) \times \frac{dy}{dx} = 1 + \frac{dy}{dx} [/tex][tex] - 2x \times \frac{dy}{dx} + 2y \times \frac{dy}{dx} - \frac{dy}{dx} = 1 - 2x + 2y[/tex][tex]( - 2 x + 2y - 1) \times \frac{dy}{dx} = 1 - 2x + 2y[/tex][tex] \frac{dy}{dx} = \frac{1 - 2x + 2y}{ - 2x + 2y - 1} [/tex]](https://id-static.z-dn.net/files/d74/538761c685a504584200b6c7c27aecdf.jpg)
![✏JAWABAN:1. Solve For x =[tex] \sqrt{x + 15} + \sqrt{x} = 15[/tex][tex] \sqrt{x + 15} = 15 - \sqrt{x} [/tex][tex]x + 15 = 225 - 30 \sqrt{x + x} [/tex][tex]30 \sqrt{x} = 225 - 15[/tex][tex]30 \sqrt{x} = 210[/tex][tex] \sqrt{ x } = 210 \div 30[/tex][tex] \sqrt{x} = 7[/tex][tex]x = 49[/tex]_______2. GCF =[tex]35y {}^{4} = 35 {}^{4} \times y[/tex][tex]14 {y}^{4} = 14 {}^{4} \times y[/tex][tex]63 {y}^{4} = 63 {}^{4} \times y[/tex][tex] = 14 {}^{4} \times y[/tex]_______3. Derivative =[tex](x - y) {}^{2} = x + y - 1[/tex][tex]\frac{d}{dx} ((x - y) {}^{2} ) = \frac{d}{dx} (x) + \frac{d}{dx} (y) - \frac{d}{dx} (1)[/tex][tex] \frac{d}{dg} ( {g}^{2} ) \times \frac{d}{dx} (x - y) = \frac{d}{dx} (x) + \frac{d}{dx} (y) - 0[/tex][tex]2g \times (1 - \frac{d}{dx} (y)) = 1 + \frac{d}{dy} (y) \times \frac{dy}{dx} [/tex][tex]2(x + y) \times (1 - \frac{d}{dx} (y)) = 1 + 1 \times \frac{dy}{dx} [/tex][tex]2x - 2x \times \frac{d}{dx} (y) - 2y + 2x \times \frac{d}{dx} (y) = 1 \times \frac{dy}{dx}[/tex][tex]2x - 2x \times \frac{d}{dy} (y) \times \frac{dy}{dx} - 2y + 2y \times \frac{d}{dy} (y) \times \frac{dy}{dx} = 1 + \frac{dy}{dx} [/tex][tex] - 2x \times \frac{dy}{dx} + 2y \times \frac{dy}{dx} - \frac{dy}{dx} = 1 - 2x + 2y[/tex][tex]( - 2 x + 2y - 1) \times \frac{dy}{dx} = 1 - 2x + 2y[/tex][tex] \frac{dy}{dx} = \frac{1 - 2x + 2y}{ - 2x + 2y - 1} [/tex]](https://id-static.z-dn.net/files/df0/fa9f78d45a33e0b9bd96e6cc2e91d065.jpg)
![✏JAWABAN:1. Solve For x =[tex] \sqrt{x + 15} + \sqrt{x} = 15[/tex][tex] \sqrt{x + 15} = 15 - \sqrt{x} [/tex][tex]x + 15 = 225 - 30 \sqrt{x + x} [/tex][tex]30 \sqrt{x} = 225 - 15[/tex][tex]30 \sqrt{x} = 210[/tex][tex] \sqrt{ x } = 210 \div 30[/tex][tex] \sqrt{x} = 7[/tex][tex]x = 49[/tex]_______2. GCF =[tex]35y {}^{4} = 35 {}^{4} \times y[/tex][tex]14 {y}^{4} = 14 {}^{4} \times y[/tex][tex]63 {y}^{4} = 63 {}^{4} \times y[/tex][tex] = 14 {}^{4} \times y[/tex]_______3. Derivative =[tex](x - y) {}^{2} = x + y - 1[/tex][tex]\frac{d}{dx} ((x - y) {}^{2} ) = \frac{d}{dx} (x) + \frac{d}{dx} (y) - \frac{d}{dx} (1)[/tex][tex] \frac{d}{dg} ( {g}^{2} ) \times \frac{d}{dx} (x - y) = \frac{d}{dx} (x) + \frac{d}{dx} (y) - 0[/tex][tex]2g \times (1 - \frac{d}{dx} (y)) = 1 + \frac{d}{dy} (y) \times \frac{dy}{dx} [/tex][tex]2(x + y) \times (1 - \frac{d}{dx} (y)) = 1 + 1 \times \frac{dy}{dx} [/tex][tex]2x - 2x \times \frac{d}{dx} (y) - 2y + 2x \times \frac{d}{dx} (y) = 1 \times \frac{dy}{dx}[/tex][tex]2x - 2x \times \frac{d}{dy} (y) \times \frac{dy}{dx} - 2y + 2y \times \frac{d}{dy} (y) \times \frac{dy}{dx} = 1 + \frac{dy}{dx} [/tex][tex] - 2x \times \frac{dy}{dx} + 2y \times \frac{dy}{dx} - \frac{dy}{dx} = 1 - 2x + 2y[/tex][tex]( - 2 x + 2y - 1) \times \frac{dy}{dx} = 1 - 2x + 2y[/tex][tex] \frac{dy}{dx} = \frac{1 - 2x + 2y}{ - 2x + 2y - 1} [/tex]](https://id-static.z-dn.net/files/d76/1f678e9872b1162e4d66817c5f39edf0.jpg)
Semoga dengan pertanyaan yang sudah terjawab oleh CattusCactus dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Thu, 15 Jul 21