l1 : x-3ay = 2 and l2 : 2x +

Berikut ini adalah pertanyaan dari idgsminay14 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

L1 : x-3ay = 2 and l2 : 2x + y = 6 paralle but not overlap, to calculate a

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

a = –1/6

Problem

l_1 : x-3ay = 2andl_2 : 2x + y = 6 are parallel but not overlap, to calculate a.

Solution

Parallel lines are those ones sharing same gradient/slope value. So, if l_1\parallel l_2andl_1 doesn’t overlap l_2 or vice versa, l_1has the same gradient value asl_2, but they must have different constant value.

We can solve this problem by converting each of both lines into y=mx+c. But, let's do it the other way, by using the original form of both l_1 and l_2, and comparing them side-by-side.

\begin{aligned}&\begin{array}{rl|l}&x-3ay=2&2x+y=6\\&...\Downarrow(l_1\times2)\\\Rightarrow&\!\!2x-6ay=4&2x+y=6\end{array}\\\end{aligned}

Both constants (on the RHS of both equations) are different, so l_1andl_2 won’t overlap.

Solving for ausing the coefficient ofyonl_2, we get:

\begin{aligned}-6a&=1\quad\therefore a&=\boxed{\:\bf{-\frac{1}{6}}\:}\end{aligned}

\blacksquare

a = –1/6 Problem[tex]l_1 : x-3ay = 2[/tex] and [tex]l_2 : 2x + y = 6[/tex] are parallel but not overlap, to calculate [tex]a[/tex].SolutionParallel lines are those ones sharing same gradient/slope value. So, if [tex]l_1\parallel l_2[/tex] and [tex]l_1[/tex] doesn’t overlap [tex]l_2[/tex] or vice versa, [tex]l_1[/tex] has the same gradient value as [tex]l_2[/tex], but they must have different constant value.We can solve this problem by converting each of both lines into [tex]y=mx+c[/tex]. But, let's do it the other way, by using the original form of both l_1 and l_2, and comparing them side-by-side.[tex]\begin{aligned}&\begin{array}{rl|l}&x-3ay=2&2x+y=6\\&...\Downarrow(l_1\times2)\\\Rightarrow&\!\!2x-6ay=4&2x+y=6\end{array}\\\end{aligned}[/tex]Both constants (on the RHS of both equations) are different, so [tex]l_1[/tex] and [tex]l_2[/tex] won’t overlap.Solving for [tex]a[/tex] using the coefficient of [tex]y[/tex] on [tex]l_2[/tex], we get:[tex]\begin{aligned}-6a&=1\quad\therefore a&=\boxed{\:\bf{-\frac{1}{6}}\:}\end{aligned}[/tex][tex]\blacksquare[/tex]

Semoga dengan pertanyaan yang sudah terjawab oleh henriyulianto dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Thu, 29 Sep 22