No 1-6, Mohon disertai dengan caranya yak, terimakasih.

Berikut ini adalah pertanyaan dari erikvivo5656 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

No 1-6, Mohon disertai dengan caranya yak, terimakasih.
No 1-6, Mohon disertai dengan caranya yak, terimakasih.

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

\boxed{\boxed{\purple{\begin{array}{lcl}\lim \limits_{x\to 0}~\frac{\sin~ax}{bx}=\frac{a}{b}&\lim \limits_{x\to 0}~\frac{ax}{\sin~bx}=\frac{a}{b}\\~\\\lim \limits_{x\to 0}~\frac{ax}{\cos~bx}=0&\lim \limits_{x\to 0}~\frac{\cos~ax}{bx}=\infty\\~\\\lim \limits_{x\to 0}~\frac{\tan~ax}{bx}=\frac{a}{b}&\lim \limits_{x\to 0}~\frac{ax}{\tan~bx}=\frac{a}{b}\\~\\\lim \limits_{x\to 0}~\frac{\sin~ax}{\tan~bx}=\frac{a}{b}&\lim \limits_{x\to 0}~\frac{\tan~ax}{\sin~bx}=\frac{a}{b}\end{array}}}}

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

\green{\huge{1.}}

\red{\huge{\lim \limits_{x\to 0}~\frac{\sin^2~x}{1-\cos~x}}}

=\lim \limits_{x\to 0}~\left(\frac{\sin^2~x}{1-\cos~x}\times \frac{1+\cos~x}{1+\cos~x}\right)

=\lim \limits_{x\to 0}~\frac{\sin^2~x(1+\cos~x)}{1-\cos^2~x}

=\lim \limits_{x\to 0}~\frac{\sin^2~x(1+\cos~x)}{\sin^2~x}

=\lim \limits_{x\to 0}~1+\cos~x

=1+\cos~0=1+1\red{\huge{=2}}

\\

\green{\huge{2.}}

\red{\huge{\lim \limits_{x\to 0}~\frac{\sin~8x+\sin~4x}{2x(\cos~12x+\cos~8x)}}}

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

\boxed{\boxed{\purple{\begin{array}{ccc}\sin~\alpha+\sin~\beta=\\2~\sin~\frac{1}{2}(\alpha+\beta)~\cos~\frac{1}{2}(\alpha+\beta)\\~\\\cos~\alpha+\cos~\beta=\\2~cos~\frac{1}{2}(\alpha+\beta)~\cos~\frac{1}{2}(\alpha+\beta)\end{array}}}}

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

=\lim \limits_{x\to 0}~\frac{2~\sin~6x~\cos~2x}{2x(2~\cos~10x~\cos~2x)}

=\lim \limits_{x\to 0}~\frac{\sin~6x}{2x~\cos~10x}

=\left(\lim \limits_{x\to 0}~\frac{\sin~6x}{2x}\right)\times \left(\lim \limits_{x\to 0}~\frac{1}{\cos~10x}\right)

=\left(\frac{6}{2}\right)\times \left(\frac{1}{\cos~0}\right)=3\times 1\red{\huge{=3}}

\\

\green{\huge{3.}}

Soal sama dengan soal nomor 1.

\\

\green{\huge{4.}}

\lim \limits_{x\to 0}~\frac{1-\cos~2x}{x~\tan~2x}

\boxed{\boxed{\purple{\cos~2x=\cos^2~x-\sin^2~x}}}

=\lim \limits_{x\to 0}~\frac{1-\left(\cos^2~x-\sin^2~x\right)}{x~\tan~2x}

=\lim \limits_{x\to 0}~\frac{\left(1-\cos^2~x\right)+\sin^2~x}{x~\tan~2x}

=\lim \limits_{x\to 0}~\frac{\sin^2~x+\sin^2~x}{x~\tan~2x}

=\lim \limits_{x\to 0}~\frac{2~\sin^2~x}{x~\tan~2x}

=2\times \left(\lim \limits_{x\to 0}~\frac{\sin~x}{x}\right)\times \left(\lim \limits_{x\to 0}~\frac{\sin~x}{\tan~2x}\right)

=2\times \frac{1}{1}\times \frac{1}{2}\red{\huge{=1}}

\\

\green{\huge{5.}}

\red{\huge{\lim \limits_{x\to 0}~\frac{\sin~x}{\tan~\frac{1}{2}x}}}=\frac{1}{\frac{1}{2}}\red{\huge{=2}}

\\

\green{\huge{6.}}

\red{\huge{\lim \limits_{x\to 0}~\frac{x~\tan~x}{1-\cos~3x}}}

=\lim \limits_{x\to 0}~\left(\frac{x~\tan~x}{1-\cos~3x}\times \frac{1+\cos~3x}{1+\cos~3x}\right)

=\lim \limits_{x\to 0}~\frac{x~\tan~x(1+\cos~3x)}{1-\cos^2~3x}

=\lim \limits_{x\to 0}~\frac{x~\tan~x(1+\cos~3x)}{\sin^2~3x}

=\left(\lim \limits_{x\to 0}~\frac{x}{\sin~3x}\right)\times \left(\lim \limits_{x\to 0}~\frac{\tan~x}{\sin~3x}\right)\times \left(\lim \limits_{x\to 0}~(1+\cos~3x)\right)

=\left(\lim \limits_{x\to 0}~\frac{x}{\sin~3x}\right)\times \left(\lim \limits_{x\to 0}~\frac{\tan~x}{\sin~3x}\right)\times \left(\lim \limits_{x\to 0}~(1+\cos~3x)\right)

=\left(\frac{1}{3}\right)\times \left(\frac{1}{3}\right)\times \left(1+\cos~0\right)

=\frac{1}{9}\times 2\red{\huge{=\frac{2}{9}}}

Semoga dengan pertanyaan yang sudah terjawab oleh WillyJember dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Mon, 28 Jun 21