Nilai dari integral batas atas pi/4 batas bawah 0 1

Berikut ini adalah pertanyaan dari JefferySantosa pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Nilai dari integral batas atas pi/4 batas bawah 0 1 / 9cos^2(x) - sin^2(x)
Nilai dari integral batas atas pi/4 batas bawah 0 1 / 9cos^2(x) - sin^2(x)

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

\large\text{$\begin{aligned}&\int_{0}^{\pi/4}\frac{1}{9\cos^{2}x-\sin^{2}x}\,dx\\&=\ \boxed{\,\bf\frac{ln\,(2)}{6}\,}\end{aligned}$}

Pembahasan

Integral Tentu

\begin{aligned}&\int_{0}^{\pi/4}\frac{1}{9\cos^{2}x-\sin^{2}x}\,dx\\{=\ }&\int_{0}^{\pi/4}\frac{1}{(3\cos x+\sin x)(3\cos x-\sin x)}\,dx\\&\ \left[\ \begin{aligned}\sin x=\frac{\tan x}{\sec x},\ \cos x=\frac{1}{\sec x}\end{aligned}\right.\\{=\ }&\int_{0}^{\pi/4}\frac{1}{\left(\dfrac{3+\tan x}{\sec x}\right)\left(\dfrac{3-\tan x}{\sec x}\right)}\,dx\\{=\ }&\int_{0}^{\pi/4}\frac{1}{(3+\tan x)(3-\tan x)}\,\sec^2x\,dx\end{aligned}
\begin{aligned}&\ \left[\ \begin{aligned}&{\sf Ambil\ }u=\tan x\\&\Rightarrow du=\sec^2x\,dx\\\end{aligned}\right.\\{=\ }&\int_{u=\tan0}^{u=\tan\pi/4}\frac{1}{(3+u)(3-u)}\,du\\{=\ }&{-}\int_{0}^{1}\frac{1}{(u+3)(u-3)}\,du\quad...(i)\\\end{aligned}

Sampai di sini kita bisa menggunakan pecahan parsial atau cara lain.

Cara 1: Dengan pecahan parsial

\begin{aligned}&&\!\!\!\!\!\!\!\!\!\!\frac{1}{(u+3)(u-3)}&=\frac{A}{u+3}+\frac{B}{u-3}\\&&&=\frac{A(u-3)+B(u+3)}{(u+3)(u-3)}\\&\Rightarrow&1&=A(u-3)+B(u+3)\\&\Rightarrow&u=-3&\implies A=-\frac{1}{6}\\&&u=3&\implies B=\frac{1}{6}\end{aligned}

Substitusi ke dalam (i):

\begin{aligned}&{-}\int_{0}^{1}\frac{1}{(u+3)(u-3)}\,du\\{=\ }&{-}\int_{0}^{1}\left(-\frac{1}{6(u+3)}+\frac{1}{6(u-3)}\right)du\\{=\ }&\frac{1}{6}\cdot\int_{0}^{1}\left(\frac{1}{u+3}-\frac{1}{u-3}\right)du\\&\ \left[\ \begin{aligned}&{\sf Ambil\ }v=u+3\\&\Rightarrow dv=du\\&{\sf Ambil\ }w=u-3\\&\Rightarrow dw=du\\\end{aligned}\right.\\{=\ }&\frac{1}{6}\cdot\int_{u=0}^{u=1}\left(\frac{1}{v}\,dv-\frac{1}{w}\,dw\right)\\{=\ }&\frac{1}{6}\Big[\ln|v|-\ln|w|\Big]_{u=0}^{u=1}\end{aligned}
\begin{aligned}{=\ }&\frac{1}{6}\Big[\ln|u+3|-\ln|u-3|\Big]_{0}^{1}\\{=\ }&\frac{1}{6}\left(\ln|4|-\ln|{-}2|-\cancel{\ln|3|}+\cancel{\ln|{-}3|}\right)\\{=\ }&\frac{1}{6}\left(\ln(4)-\ln(2)\right)\\{=\ }&\frac{1}{6}\cdot\ln\left(\frac{4}{2}\right)\\{=\ }&\boxed{\,\bf\frac{ln\,(2)}{6}\,}\end{aligned}

\blacksquare

Cara 2

Dari (i):

\begin{aligned}&{-}\int_{0}^{1}\frac{1}{(u+3)(u-3)}\,du\\&\ \left[\ \begin{aligned}&{\sf Ambil\ }v=u+3\\&\Rightarrow u-3=v-6\\&\Rightarrow dv=du\\\end{aligned}\right.\\{=\ }&{-}\int_{u=0}^{u=1}\frac{1}{v(v-6)}\,dv\\{=\ }&{-}\int_{u=0}^{u=1}\frac{1}{v^2\left(1-\dfrac{6}{v}\right)}\,dv\\{=\ }&{-}\int_{u=0}^{u=1}\frac{1}{\left(1-\dfrac{6}{v}\right)}\cdot\frac{1}{v^2}\,dv\end{aligned}
\begin{aligned}&\ \left[\ \begin{aligned}&{\sf Ambil\ }w=1-\frac{6}{v}\\&\Rightarrow dw=\frac{6}{v^2}\,dv=6\cdot\frac{1}{v^2}\,dv\\&\Rightarrow \frac{1}{6}\,dw=\frac{1}{v^2}\,dv\end{aligned}\right.\\{=\ }&{-}\int_{u=0}^{u=1}\frac{1}{w}\cdot\frac{1}{6}\,dw\\{=\ }&{-}\frac{1}{6}\Big[\ln|w|\Big]_{u=0}^{u=1}\\{=\ }&{-}\frac{1}{6}\left[\ln\left|1-\frac{6}{v}\right|\right]_{u=0}^{u=1}\\{=\ }&{-}\frac{1}{6}\left[\ln\left|\frac{v-6}{v}\right|\right]_{u=0}^{u=1}\end{aligned}
\begin{aligned}{=\ }&{-}\frac{1}{6}\left[\ln\left|\frac{u-3}{u+3}\right|\right]_{0}^{1}\\{=\ }&{-}\frac{1}{6}\left(\ln\left|\frac{-2}{4}\right|-\ln\left|\frac{-3}{3}\right|\right)\\{=\ }&{-}\frac{1}{6}\left(\ln\left(\frac{1}{2}\right)-\ln(1)\right)\\{=\ }&{-}\frac{1}{6}\cdot\ln\left(\frac{1/2}{1}\right)={-}\frac{1}{6}\cdot\ln\left(\frac{1}{2}\right)\\{=\ }&{-}\frac{1}{6}\left(-\ln(2)\right)\\{=\ }&\boxed{\,\bf\frac{ln\,(2)}{6}\,}\end{aligned}

\blacksquare

Semoga dengan pertanyaan yang sudah terjawab oleh henriyulianto dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Thu, 06 Oct 22