Kuis: super susahDiketahui pertidaksamaan8(logₐx)² + logₐ(x²) > 3(i) Tentukan hp

Berikut ini adalah pertanyaan dari xcvi pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Kuis: super susahDiketahui pertidaksamaan
8(logₐx)² + logₐ(x²) > 3

(i) Tentukan hp untuk x
Jawab: hp = {x | ......., xER}

(ii) Tentukan hp untuk a
Jawab: hp = {a | ...... v ......, aER}

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

pertidaksamaan

logaritma

K = a'log x

8 (a'log x)² + a'log x² > 3

8 K² + 2K - 3 > 0

(2K - 1)(4K + 3) > 0

4K + 3 < 0 atau 2K - 1 > 1/2

K < -3/4 atau K > 1/2

•••

syarat numerus

x > 0

syarat basis

a > 0 dan a ≠ 1

atau bs dtulis 0 < a < 1 atau a > 1

K < -3/4

a'log x < -3/4

untuk 0 < a < 1

x > a^-3/4

untuk a > 1

0 < x < a^-3/4

•••

K > 1/2

a'log x > 1/2

untuk 0 < a < 1

0 < x < a^1/2

untuk a > 1

x > a^1/2

•••

HP a = {a| 0 < a < 1 atau a > 1, a R}

HP x = {x| 0 < x < a^1/2 atau x > a^-3/4 , 0 < x < a^-3/4 atau x > a^1/2 , x R}

Jawab:Penjelasan dengan langkah-langkah:Catatan PENTING untuk para viewer : liat jawabannya di Brainly WEB jangan di APP[tex]8\cdot \log^2_a(x)+2\log_a(x) > 3\\8\left(\log^2_a(x) + \dfrac{\log_a(x)}{4}\right) > 3\\8\left(\left(\log_a(x) + \dfrac{1}{8}\right)^2 - \dfrac{1}{64}\right) > 3\\8\left(\log_a(x) + \dfrac{1}{8}\right)^2 - \dfrac{1}{8} > 3\\64\left(\log_a(x) + \dfrac{1}{8}\right)^2 - 25 > 0\\\left(8\left(\log_a(x)+\dfrac{1}{8}\right) + 5\right)\left(8\left(\log_a(x)+\dfrac{1}{8}\right) - 5 \right) > 0\\\left(8\log_a(x)+ 6\right)\left(8\log_a(x)- 4 \right) > 0\\[/tex][tex]\log_a(x^8\cdot a^6)\cdot \log_a\left(\dfrac{x^8}{a^4}\right) > 0\\\log_a(x^4\cdot a^3)\cdot \log_a\left(\dfrac{x^2}{a}\right) > 0\\ \to \left(\log_a(x^4\cdot a^3) \cap \log_a\left(\dfrac{x^2}{a}\right) > 0\right) \cup \left(\log_a(x^4\cdot a^3) \cap \log_a\left(\dfrac{x^2}{a}\right) < 0\right)\\[/tex][tex]\text{Kasus 1 :}\\\log_a(x^4\cdot a^3) \cap \log_a\left(\dfrac{x^2}{a}\right) > 0 \to \log_a(x^4\cdot a^3) > 0\cap \log_a\left(\dfrac{x^2}{a}\right) > 0\\x^4\cdot a^3 > 1 \cap \dfrac{x^2}{a} > 1 \to \text{Syarat nilai : } x > 0, (0 < a < 1 )\cup (a > 1)\\x^4 > \dfrac{1}{a^3} \cap x^2 > a\\[/tex][tex]\text{batas nilai $x$ : }\\\\\left(\left(x < -\dfrac{1}{\sqrt[4]{a^3}} \cup x > \dfrac{1}{\sqrt[4]{a^3}}\right) \cap \left( x < -\sqrt{a} \cap x > \sqrt{a} \right)\right)\cap \left( x > 0 \right)\cap \left( a > 0 \cap a\neq 1\right) \\\\\boxed{\boxed{ \left(x > \dfrac{1}{\sqrt[4]{a^3}}\cap x > \sqrt{a}\right) \cap ( a > 0\cap a\neq 1) }}[/tex][tex]\text{Kasus 2 :}\\\log_a(x^4\cdot a^3) \cap \log_a\left(\dfrac{x^2}{a}\right) < 0 \to \log_a(x^4\cdot a^3) < 0\cap \log_a\left(\dfrac{x^2}{a}\right) < 0\\ (0 < x^4\cdot a^3 < 1) \cap \left( 0 < \dfrac{x^2}{a} < 1\right) \to \text{Syarat nilai : } x > 0, (0 < a < 1 )\cup (a > 1)\\\\ \left(\left(0 < x^4 < \dfrac{1}{a^3}\right) \cap \left( 0 < x^2 < a\right)\right) \cap \left(x > 0\right) \cap (a > 0 \cap a \neq 1)[/tex][tex]\boxed{\boxed{ \left(x < \dfrac{1}{\sqrt[4]{a^3}} \cap x < \sqrt{a}\right) \cap ( a > 0\cap a\neq 1) }}[/tex]a) Batas x :[tex]\boxed{\boxed{ \left(\left(x > \dfrac{1}{\sqrt[4]{a^3}}\cap x > \sqrt{a}\right) \cup \left(x < \dfrac{1}{\sqrt[4]{a^3}} \cap x < \sqrt{a}\right) \right) \cap (x > 0)}}[/tex]Untuk 0 < a < 1 :[tex]\boxed{\boxed{ \left( x < \sqrt{a}\cap (x < 1) \right) \cup \left(x > \dfrac{1}{\sqrt[4]{a^3}}\cap \left(x > 1\right)\right) }}[/tex]a > 1 :[tex]\boxed{\boxed{ \left(x < \dfrac{1}{\sqrt[4]{a^3}} \cap (0 < x < 1)\right)\cup \left(x > \sqrt{a} \cap \left(x > 1\right)\right) }}[/tex]b) Batas a :[tex]\left(x^4 > \dfrac{1}{a^3} \cap x^2 > a \right) \cup \left((0 < x^4\cdot a^3 < 1) \cap \left( 0 < \dfrac{x^2}{a} < 1\right) \right)\\\\[/tex][tex]\boxed{\boxed{\left( \left(a > \dfrac{1}{x\sqrt[3]{x}} \cap a < x^2\right)\cup \left( a < \dfrac{1}{x\sqrt[3]{x}}\cap a > x^2 \right)\right) \cap \left( a > 0 \cap a\neq 1 \right)}}[/tex]Untuk 0 < x < 1 :[tex]\boxed{\boxed{ (a > x^2\cap \left(a < 1\right)) \cup \left(a < \dfrac{1}{x\sqrt[3]{x}} \cap \left(a > 1\right)\right) }}[/tex]x > 1 :[tex]\boxed{\boxed{ \left(a > \dfrac{1}{x\sqrt[3]{x}} \cap \left( 0 < a < 1\right)\right)\cup (a < x^2\cap \left(a > 1\right)) \right) }}[/tex]

Semoga dengan pertanyaan yang sudah terjawab oleh ridhovictor4 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Fri, 30 Sep 22