diketahui kubus KLMN OPQR dengan panjang rusuk 10cm, maka jarak

Berikut ini adalah pertanyaan dari febrianpw45 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Diketahui kubus KLMN OPQR dengan panjang rusuk 10cm, maka jarak dari titik M ke garis KQ adalah​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawab:

Penjelasan dengan langkah-langkah:

1. Cara 1 : vektor dan turunan fungsi

\bold{K} = \left[\begin{array}{ccc}0\\ 0\\ 0\end{array}\right] \to \bold{M} = \left[\begin{array}{ccc}10\\ 10\\ 0\end{array}\right], \bold{Q} = \left[\begin{array}{ccc}10\\ 10\\ 10\end{array}\right]\\\\\bold{L}(t) = \bold{K}+t\cdot \bold{KQ}\\\\\bold{L}(t) = t\cdot \bold{Q} = \left[\begin{array}{ccc}10t\\ 10t\\ 10t\end{array}\right] \\\bold{M} - \bold{L}(t) = \left[\begin{array}{ccc}10-10t\\ 10-10t\\ 10t\end{array}\right]= 10\left[\begin{array}{ccc}1-t\\ 1-t\\ t\end{array}\right]\\\\

r(t) = \sqrt{2(1-t)^2+t^2}\to r^2(t) = R(t) = 2(1-t)^2+t^2\\\\\text{Jarak $\bold{M}$ ke $ \bold{KQ}$ minimal ketika nilai $R(t)$ minimal pula, }\\\text{ini bisa dicari dengan turunan :}\\\\R'(t) = 0= -4(1-t)+2t\\t-2(1-t) = 0\\3t=2\to t = \dfrac{2}{3}\\\\

\text{Jarak $\bold{M}$ ke $ \bold{KQ}$ = } 10\cdot r\left(\dfrac{2}{3} \right)\\\text{Jarak $\bold{M}$ ke $ \bold{KQ}$ = }10 \sqrt{2\left(1-\dfrac{2}{3} \right)^2+\left(\dfrac{2}{3}\right)^2}\\\text{Jarak $\bold{M}$ ke $ \bold{KQ}$ = } 10\sqrt{2\left(\dfrac{1}{3} \right)^2+\left(\dfrac{2}{3}\right)^2}\\\\\Huge{\boxed{\boxed{\boldsymbol{\mathrm{Jarak \;\bold{M}\; ke \;\bold{KQ} =\; } \dfrac{10}{3} \sqrt{6}} }}

2. cara 2 : Invers pitagoras

Jarak M ke KQ = d

d^{-2} = KM^{-2}+MQ^{-2} = (10\sqrt{2})^{-2}+10^{-2}

Jawab:Penjelasan dengan langkah-langkah:1. Cara 1 : vektor dan turunan fungsi[tex]\bold{K} = \left[\begin{array}{ccc}0\\ 0\\ 0\end{array}\right] \to \bold{M} = \left[\begin{array}{ccc}10\\ 10\\ 0\end{array}\right], \bold{Q} = \left[\begin{array}{ccc}10\\ 10\\ 10\end{array}\right]\\\\\bold{L}(t) = \bold{K}+t\cdot \bold{KQ}\\\\\bold{L}(t) = t\cdot \bold{Q} = \left[\begin{array}{ccc}10t\\ 10t\\ 10t\end{array}\right] \\\bold{M} - \bold{L}(t) = \left[\begin{array}{ccc}10-10t\\ 10-10t\\ 10t\end{array}\right]= 10\left[\begin{array}{ccc}1-t\\ 1-t\\ t\end{array}\right]\\\\[/tex][tex]r(t) = \sqrt{2(1-t)^2+t^2}\to r^2(t) = R(t) = 2(1-t)^2+t^2\\\\\text{Jarak $\bold{M}$ ke $ \bold{KQ}$ minimal ketika nilai $R(t)$ minimal pula, }\\\text{ini bisa dicari dengan turunan :}\\\\R'(t) = 0= -4(1-t)+2t\\t-2(1-t) = 0\\3t=2\to t = \dfrac{2}{3}\\\\[/tex][tex]\text{Jarak $\bold{M}$ ke $ \bold{KQ}$ = } 10\cdot r\left(\dfrac{2}{3} \right)\\\text{Jarak $\bold{M}$ ke $ \bold{KQ}$ = }10 \sqrt{2\left(1-\dfrac{2}{3} \right)^2+\left(\dfrac{2}{3}\right)^2}\\\text{Jarak $\bold{M}$ ke $ \bold{KQ}$ = } 10\sqrt{2\left(\dfrac{1}{3} \right)^2+\left(\dfrac{2}{3}\right)^2}\\\\\Huge{\boxed{\boxed{\boldsymbol{\mathrm{Jarak \;\bold{M}\; ke \;\bold{KQ} =\; } \dfrac{10}{3} \sqrt{6}} }}[/tex]2. cara 2 : Invers pitagorasJarak M ke KQ = d[tex]d^{-2} = KM^{-2}+MQ^{-2} = (10\sqrt{2})^{-2}+10^{-2}[/tex]Jawab:Penjelasan dengan langkah-langkah:1. Cara 1 : vektor dan turunan fungsi[tex]\bold{K} = \left[\begin{array}{ccc}0\\ 0\\ 0\end{array}\right] \to \bold{M} = \left[\begin{array}{ccc}10\\ 10\\ 0\end{array}\right], \bold{Q} = \left[\begin{array}{ccc}10\\ 10\\ 10\end{array}\right]\\\\\bold{L}(t) = \bold{K}+t\cdot \bold{KQ}\\\\\bold{L}(t) = t\cdot \bold{Q} = \left[\begin{array}{ccc}10t\\ 10t\\ 10t\end{array}\right] \\\bold{M} - \bold{L}(t) = \left[\begin{array}{ccc}10-10t\\ 10-10t\\ 10t\end{array}\right]= 10\left[\begin{array}{ccc}1-t\\ 1-t\\ t\end{array}\right]\\\\[/tex][tex]r(t) = \sqrt{2(1-t)^2+t^2}\to r^2(t) = R(t) = 2(1-t)^2+t^2\\\\\text{Jarak $\bold{M}$ ke $ \bold{KQ}$ minimal ketika nilai $R(t)$ minimal pula, }\\\text{ini bisa dicari dengan turunan :}\\\\R'(t) = 0= -4(1-t)+2t\\t-2(1-t) = 0\\3t=2\to t = \dfrac{2}{3}\\\\[/tex][tex]\text{Jarak $\bold{M}$ ke $ \bold{KQ}$ = } 10\cdot r\left(\dfrac{2}{3} \right)\\\text{Jarak $\bold{M}$ ke $ \bold{KQ}$ = }10 \sqrt{2\left(1-\dfrac{2}{3} \right)^2+\left(\dfrac{2}{3}\right)^2}\\\text{Jarak $\bold{M}$ ke $ \bold{KQ}$ = } 10\sqrt{2\left(\dfrac{1}{3} \right)^2+\left(\dfrac{2}{3}\right)^2}\\\\\Huge{\boxed{\boxed{\boldsymbol{\mathrm{Jarak \;\bold{M}\; ke \;\bold{KQ} =\; } \dfrac{10}{3} \sqrt{6}} }}[/tex]2. cara 2 : Invers pitagorasJarak M ke KQ = d[tex]d^{-2} = KM^{-2}+MQ^{-2} = (10\sqrt{2})^{-2}+10^{-2}[/tex]Jawab:Penjelasan dengan langkah-langkah:1. Cara 1 : vektor dan turunan fungsi[tex]\bold{K} = \left[\begin{array}{ccc}0\\ 0\\ 0\end{array}\right] \to \bold{M} = \left[\begin{array}{ccc}10\\ 10\\ 0\end{array}\right], \bold{Q} = \left[\begin{array}{ccc}10\\ 10\\ 10\end{array}\right]\\\\\bold{L}(t) = \bold{K}+t\cdot \bold{KQ}\\\\\bold{L}(t) = t\cdot \bold{Q} = \left[\begin{array}{ccc}10t\\ 10t\\ 10t\end{array}\right] \\\bold{M} - \bold{L}(t) = \left[\begin{array}{ccc}10-10t\\ 10-10t\\ 10t\end{array}\right]= 10\left[\begin{array}{ccc}1-t\\ 1-t\\ t\end{array}\right]\\\\[/tex][tex]r(t) = \sqrt{2(1-t)^2+t^2}\to r^2(t) = R(t) = 2(1-t)^2+t^2\\\\\text{Jarak $\bold{M}$ ke $ \bold{KQ}$ minimal ketika nilai $R(t)$ minimal pula, }\\\text{ini bisa dicari dengan turunan :}\\\\R'(t) = 0= -4(1-t)+2t\\t-2(1-t) = 0\\3t=2\to t = \dfrac{2}{3}\\\\[/tex][tex]\text{Jarak $\bold{M}$ ke $ \bold{KQ}$ = } 10\cdot r\left(\dfrac{2}{3} \right)\\\text{Jarak $\bold{M}$ ke $ \bold{KQ}$ = }10 \sqrt{2\left(1-\dfrac{2}{3} \right)^2+\left(\dfrac{2}{3}\right)^2}\\\text{Jarak $\bold{M}$ ke $ \bold{KQ}$ = } 10\sqrt{2\left(\dfrac{1}{3} \right)^2+\left(\dfrac{2}{3}\right)^2}\\\\\Huge{\boxed{\boxed{\boldsymbol{\mathrm{Jarak \;\bold{M}\; ke \;\bold{KQ} =\; } \dfrac{10}{3} \sqrt{6}} }}[/tex]2. cara 2 : Invers pitagorasJarak M ke KQ = d[tex]d^{-2} = KM^{-2}+MQ^{-2} = (10\sqrt{2})^{-2}+10^{-2}[/tex]Jawab:Penjelasan dengan langkah-langkah:1. Cara 1 : vektor dan turunan fungsi[tex]\bold{K} = \left[\begin{array}{ccc}0\\ 0\\ 0\end{array}\right] \to \bold{M} = \left[\begin{array}{ccc}10\\ 10\\ 0\end{array}\right], \bold{Q} = \left[\begin{array}{ccc}10\\ 10\\ 10\end{array}\right]\\\\\bold{L}(t) = \bold{K}+t\cdot \bold{KQ}\\\\\bold{L}(t) = t\cdot \bold{Q} = \left[\begin{array}{ccc}10t\\ 10t\\ 10t\end{array}\right] \\\bold{M} - \bold{L}(t) = \left[\begin{array}{ccc}10-10t\\ 10-10t\\ 10t\end{array}\right]= 10\left[\begin{array}{ccc}1-t\\ 1-t\\ t\end{array}\right]\\\\[/tex][tex]r(t) = \sqrt{2(1-t)^2+t^2}\to r^2(t) = R(t) = 2(1-t)^2+t^2\\\\\text{Jarak $\bold{M}$ ke $ \bold{KQ}$ minimal ketika nilai $R(t)$ minimal pula, }\\\text{ini bisa dicari dengan turunan :}\\\\R'(t) = 0= -4(1-t)+2t\\t-2(1-t) = 0\\3t=2\to t = \dfrac{2}{3}\\\\[/tex][tex]\text{Jarak $\bold{M}$ ke $ \bold{KQ}$ = } 10\cdot r\left(\dfrac{2}{3} \right)\\\text{Jarak $\bold{M}$ ke $ \bold{KQ}$ = }10 \sqrt{2\left(1-\dfrac{2}{3} \right)^2+\left(\dfrac{2}{3}\right)^2}\\\text{Jarak $\bold{M}$ ke $ \bold{KQ}$ = } 10\sqrt{2\left(\dfrac{1}{3} \right)^2+\left(\dfrac{2}{3}\right)^2}\\\\\Huge{\boxed{\boxed{\boldsymbol{\mathrm{Jarak \;\bold{M}\; ke \;\bold{KQ} =\; } \dfrac{10}{3} \sqrt{6}} }}[/tex]2. cara 2 : Invers pitagorasJarak M ke KQ = d[tex]d^{-2} = KM^{-2}+MQ^{-2} = (10\sqrt{2})^{-2}+10^{-2}[/tex]

Semoga dengan pertanyaan yang sudah terjawab oleh ridhovictor4 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Thu, 08 Sep 22