Diketahui kubus PQRS.TUVW dengan panjang rusuk 12 cm. jika titik

Berikut ini adalah pertanyaan dari Eyron pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Diketahui kubus PQRS.TUVW dengan panjang rusuk 12 cm. jika titik A adalah titik potong diagonal bidang PQRS, jarak antara titik A dan titik V adalah . . . cm.

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jarak antara titik A dan titik V adalah 6√6 cm. Ini merupakan kasus menghitung jarak antara dua titik pada kubus. Titik A adalah titik potong diagonal bidang PQRS ada kubus PQRS.TUVW dengan panjang rusuk 12 cm. Dibutuhkan skema gambar kubus serta pengerjaan dengan menggunakan dalil Phytagoras.

Pembahasan

Perhatikan sketsa kubus pada gambar terlampir. Titik A berada di pusat alas PQRS sebab titik A adalah titik potong diagonal bidang PQRS, tepatnya perpotongan diagonal PR dan QS. Panjang rusuk kubus diketahui sebesar r = 12 cm. Diminta untuk menghitung jarak titik A dan titik V.

Step-1: panjang AR

AR=\frac{1}{2}PR

Ingat, diagonal bidang adalah r√2. PR merupakan garis diagonal bidang.

AR=\frac{1}{2}r\sqrt{2}

AR=\frac{1}{2}(12\sqrt{2})

AR=6\sqrt{2}

∴ AR=6√2 cm

Step-2: panjang AV pada segitiga siku-siku AVR

AV=\sqrt{AR^2+VR^2}

AV=\sqrt{(6\sqrt{2})^2+12^2}

AV=\sqrt{72+144}

AV=\sqrt{72(1+2)}

AV=\sqrt{36\times 2\times 3}

Jadi jarak titik A dan titik V adalah \boxed{AV=~6\sqrt{6}~cm~}

Pelajari lebih lanjut

1. Kasus menghitung besarnya sudut antara dua rusuk kubus yomemimo.com/tugas/14486320

2. Sebuah persoalan terkait prisma segienam beraturan yomemimo.com/tugas/13643632

3. Ingin mengulang materi menghitung volum prisma beralaskan segitiga siku-siku? yomemimo.com/tugas/1214737

4. Menghitung jarak titik ke bidang yomemimo.com/tugas/14511508

------------------------------------------------------------

Detil jawaban

Kelas        : XII

Mapel       : Matematika

Bab           : Geometri Bidang Ruang

Kode         : 12.2.2


Kata Kunci : kubus, PQRS.TUVW, panjang, rusuk, 12 cm, titik A, titik V, potong, diadonal, bidang, jarak, dalil, teorema, phytagoras

Jarak antara titik A dan titik V adalah 6√6 cm. Ini merupakan kasus menghitung jarak antara dua titik pada kubus. Titik A adalah titik potong diagonal bidang PQRS ada kubus PQRS.TUVW dengan panjang rusuk 12 cm. Dibutuhkan skema gambar kubus serta pengerjaan dengan menggunakan dalil Phytagoras.PembahasanPerhatikan sketsa kubus pada gambar terlampir. Titik A berada di pusat alas PQRS sebab titik A adalah titik potong diagonal bidang PQRS, tepatnya perpotongan diagonal PR dan QS. Panjang rusuk kubus diketahui sebesar r = 12 cm. Diminta untuk menghitung jarak titik A dan titik V.Step-1: panjang AR[tex]AR=\frac{1}{2}PR[/tex]Ingat, diagonal bidang adalah r√2. PR merupakan garis diagonal bidang.[tex]AR=\frac{1}{2}r\sqrt{2}[/tex][tex]AR=\frac{1}{2}(12\sqrt{2})[/tex][tex]AR=6\sqrt{2}[/tex]∴ AR=6√2 cmStep-2: panjang AV pada segitiga siku-siku AVR[tex]AV=\sqrt{AR^2+VR^2}[/tex][tex]AV=\sqrt{(6\sqrt{2})^2+12^2}[/tex][tex]AV=\sqrt{72+144}[/tex][tex]AV=\sqrt{72(1+2)}[/tex][tex]AV=\sqrt{36\times 2\times 3}[/tex]Jadi jarak titik A dan titik V adalah [tex]\boxed{AV=~6\sqrt{6}~cm~}[/tex]Pelajari lebih lanjut1. Kasus menghitung besarnya sudut antara dua rusuk kubus brainly.co.id/tugas/144863202. Sebuah persoalan terkait prisma segienam beraturan brainly.co.id/tugas/136436323. Ingin mengulang materi menghitung volum prisma beralaskan segitiga siku-siku? brainly.co.id/tugas/12147374. Menghitung jarak titik ke bidang https://brainly.co.id/tugas/14511508------------------------------------------------------------Detil jawabanKelas        : XIIMapel       : MatematikaBab           : Geometri Bidang RuangKode         : 12.2.2Kata Kunci : kubus, PQRS.TUVW, panjang, rusuk, 12 cm, titik A, titik V, potong, diadonal, bidang, jarak, dalil, teorema, phytagoras

Semoga dengan pertanyaan yang sudah terjawab oleh hakimium dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Mon, 24 Aug 15