Berikut ini adalah pertanyaan dari julfanajwan35 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas
Big point?
special BA?
silahkan..
![big point?special BA?silahkan..](https://id-static.z-dn.net/files/dd5/a37d218fe23f55a14404fe1cd50fcce0.jpg)
special BA?
silahkan..
![big point?special BA?silahkan..](https://id-static.z-dn.net/files/dd5/a37d218fe23f55a14404fe1cd50fcce0.jpg)
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
mohon koreksinya yaa, hehee
semoga betul^
![Nomor 3a[tex] \frac{ {2}^{2}. {2}^{3} . {2}^{4}. {2}^{5}}{ {2}^{7}. {2}^{6}} \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{ {2}^{7 + 6} } \\ \\ = \frac{ {2}^{14} }{ {2}^{13} } \\ \\ = {2}^{14 - 13} \\ \\ = {2}^{1} \\ \\ = 2[/tex][tex] \\ [/tex]Nomor 3b[tex] \frac{ {2}^{2} . {2}^{3} . {2}^{4}. {2}^{5} }{ {6}^{2} . {20}^{2} } \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{(2 \times 3) {}^{2}. {(5 \times {2}^{2} )}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2}. {3}^{2}. {5}^{2}. {2}^{4} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2 + 4} . {3}^{2} . {5}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{6}.9.25 } \\ \\ = \frac{ {2}^{14 - 2} }{225} \\ \\ = \frac{ {2}^{12} }{225} \\ \\ = \frac{4096}{225} \\ \\ =18,2[/tex][tex] \\ [/tex]Nomor 3c[tex] \frac{ {6}^{3}. {8}^{4}. {9}^{2} }{ {3}^{5}. {4}^{4}. {2}^{2} } \\ \\ = \frac{ {(2 \times 3)}^{3}. { ({2}^{3} )}^{4}. { ({3}^{2} )}^{2} }{ {3}^{5} . {( {2}^{2}) }^{4}. {2}^{2} } \\ \\ = \frac{ {2}^{3}. {3}^{3}. {2}^{12}. {3}^{4} }{ {3}^{5}. {2}^{8}. {2}^{2} } \\ \\ = {2}^{(3 + 12 )- (8 + 2)} \times {3}^{(3 + 4) - 5} \\ \\ = {2}^{15 - 10} \times {3}^{7 - 5} \\ \\ = {2}^{5} \times {3}^{2} \\ \\ = 32 \times 9 \\ \\ = 288[/tex]](https://id-static.z-dn.net/files/d1e/8271a12837d5be4e732e4abc8f6678da.jpg)
![Nomor 3a[tex] \frac{ {2}^{2}. {2}^{3} . {2}^{4}. {2}^{5}}{ {2}^{7}. {2}^{6}} \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{ {2}^{7 + 6} } \\ \\ = \frac{ {2}^{14} }{ {2}^{13} } \\ \\ = {2}^{14 - 13} \\ \\ = {2}^{1} \\ \\ = 2[/tex][tex] \\ [/tex]Nomor 3b[tex] \frac{ {2}^{2} . {2}^{3} . {2}^{4}. {2}^{5} }{ {6}^{2} . {20}^{2} } \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{(2 \times 3) {}^{2}. {(5 \times {2}^{2} )}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2}. {3}^{2}. {5}^{2}. {2}^{4} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2 + 4} . {3}^{2} . {5}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{6}.9.25 } \\ \\ = \frac{ {2}^{14 - 2} }{225} \\ \\ = \frac{ {2}^{12} }{225} \\ \\ = \frac{4096}{225} \\ \\ =18,2[/tex][tex] \\ [/tex]Nomor 3c[tex] \frac{ {6}^{3}. {8}^{4}. {9}^{2} }{ {3}^{5}. {4}^{4}. {2}^{2} } \\ \\ = \frac{ {(2 \times 3)}^{3}. { ({2}^{3} )}^{4}. { ({3}^{2} )}^{2} }{ {3}^{5} . {( {2}^{2}) }^{4}. {2}^{2} } \\ \\ = \frac{ {2}^{3}. {3}^{3}. {2}^{12}. {3}^{4} }{ {3}^{5}. {2}^{8}. {2}^{2} } \\ \\ = {2}^{(3 + 12 )- (8 + 2)} \times {3}^{(3 + 4) - 5} \\ \\ = {2}^{15 - 10} \times {3}^{7 - 5} \\ \\ = {2}^{5} \times {3}^{2} \\ \\ = 32 \times 9 \\ \\ = 288[/tex]](https://id-static.z-dn.net/files/ded/3a6e1c72eb9b4d8b36ba50a09cb360fe.jpg)
![Nomor 3a[tex] \frac{ {2}^{2}. {2}^{3} . {2}^{4}. {2}^{5}}{ {2}^{7}. {2}^{6}} \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{ {2}^{7 + 6} } \\ \\ = \frac{ {2}^{14} }{ {2}^{13} } \\ \\ = {2}^{14 - 13} \\ \\ = {2}^{1} \\ \\ = 2[/tex][tex] \\ [/tex]Nomor 3b[tex] \frac{ {2}^{2} . {2}^{3} . {2}^{4}. {2}^{5} }{ {6}^{2} . {20}^{2} } \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{(2 \times 3) {}^{2}. {(5 \times {2}^{2} )}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2}. {3}^{2}. {5}^{2}. {2}^{4} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2 + 4} . {3}^{2} . {5}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{6}.9.25 } \\ \\ = \frac{ {2}^{14 - 2} }{225} \\ \\ = \frac{ {2}^{12} }{225} \\ \\ = \frac{4096}{225} \\ \\ =18,2[/tex][tex] \\ [/tex]Nomor 3c[tex] \frac{ {6}^{3}. {8}^{4}. {9}^{2} }{ {3}^{5}. {4}^{4}. {2}^{2} } \\ \\ = \frac{ {(2 \times 3)}^{3}. { ({2}^{3} )}^{4}. { ({3}^{2} )}^{2} }{ {3}^{5} . {( {2}^{2}) }^{4}. {2}^{2} } \\ \\ = \frac{ {2}^{3}. {3}^{3}. {2}^{12}. {3}^{4} }{ {3}^{5}. {2}^{8}. {2}^{2} } \\ \\ = {2}^{(3 + 12 )- (8 + 2)} \times {3}^{(3 + 4) - 5} \\ \\ = {2}^{15 - 10} \times {3}^{7 - 5} \\ \\ = {2}^{5} \times {3}^{2} \\ \\ = 32 \times 9 \\ \\ = 288[/tex]](https://id-static.z-dn.net/files/d52/1385e5e4e91ad21e64a2649214a323e0.jpg)
![Nomor 3a[tex] \frac{ {2}^{2}. {2}^{3} . {2}^{4}. {2}^{5}}{ {2}^{7}. {2}^{6}} \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{ {2}^{7 + 6} } \\ \\ = \frac{ {2}^{14} }{ {2}^{13} } \\ \\ = {2}^{14 - 13} \\ \\ = {2}^{1} \\ \\ = 2[/tex][tex] \\ [/tex]Nomor 3b[tex] \frac{ {2}^{2} . {2}^{3} . {2}^{4}. {2}^{5} }{ {6}^{2} . {20}^{2} } \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{(2 \times 3) {}^{2}. {(5 \times {2}^{2} )}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2}. {3}^{2}. {5}^{2}. {2}^{4} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2 + 4} . {3}^{2} . {5}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{6}.9.25 } \\ \\ = \frac{ {2}^{14 - 2} }{225} \\ \\ = \frac{ {2}^{12} }{225} \\ \\ = \frac{4096}{225} \\ \\ =18,2[/tex][tex] \\ [/tex]Nomor 3c[tex] \frac{ {6}^{3}. {8}^{4}. {9}^{2} }{ {3}^{5}. {4}^{4}. {2}^{2} } \\ \\ = \frac{ {(2 \times 3)}^{3}. { ({2}^{3} )}^{4}. { ({3}^{2} )}^{2} }{ {3}^{5} . {( {2}^{2}) }^{4}. {2}^{2} } \\ \\ = \frac{ {2}^{3}. {3}^{3}. {2}^{12}. {3}^{4} }{ {3}^{5}. {2}^{8}. {2}^{2} } \\ \\ = {2}^{(3 + 12 )- (8 + 2)} \times {3}^{(3 + 4) - 5} \\ \\ = {2}^{15 - 10} \times {3}^{7 - 5} \\ \\ = {2}^{5} \times {3}^{2} \\ \\ = 32 \times 9 \\ \\ = 288[/tex]](https://id-static.z-dn.net/files/d30/4263674c423c40d94598058c8b3d9852.jpg)
![Nomor 3a[tex] \frac{ {2}^{2}. {2}^{3} . {2}^{4}. {2}^{5}}{ {2}^{7}. {2}^{6}} \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{ {2}^{7 + 6} } \\ \\ = \frac{ {2}^{14} }{ {2}^{13} } \\ \\ = {2}^{14 - 13} \\ \\ = {2}^{1} \\ \\ = 2[/tex][tex] \\ [/tex]Nomor 3b[tex] \frac{ {2}^{2} . {2}^{3} . {2}^{4}. {2}^{5} }{ {6}^{2} . {20}^{2} } \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{(2 \times 3) {}^{2}. {(5 \times {2}^{2} )}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2}. {3}^{2}. {5}^{2}. {2}^{4} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2 + 4} . {3}^{2} . {5}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{6}.9.25 } \\ \\ = \frac{ {2}^{14 - 2} }{225} \\ \\ = \frac{ {2}^{12} }{225} \\ \\ = \frac{4096}{225} \\ \\ =18,2[/tex][tex] \\ [/tex]Nomor 3c[tex] \frac{ {6}^{3}. {8}^{4}. {9}^{2} }{ {3}^{5}. {4}^{4}. {2}^{2} } \\ \\ = \frac{ {(2 \times 3)}^{3}. { ({2}^{3} )}^{4}. { ({3}^{2} )}^{2} }{ {3}^{5} . {( {2}^{2}) }^{4}. {2}^{2} } \\ \\ = \frac{ {2}^{3}. {3}^{3}. {2}^{12}. {3}^{4} }{ {3}^{5}. {2}^{8}. {2}^{2} } \\ \\ = {2}^{(3 + 12 )- (8 + 2)} \times {3}^{(3 + 4) - 5} \\ \\ = {2}^{15 - 10} \times {3}^{7 - 5} \\ \\ = {2}^{5} \times {3}^{2} \\ \\ = 32 \times 9 \\ \\ = 288[/tex]](https://id-static.z-dn.net/files/ddc/ae5d402f4d0bcc061f73d11ac0ef920a.jpg)
![Nomor 3a[tex] \frac{ {2}^{2}. {2}^{3} . {2}^{4}. {2}^{5}}{ {2}^{7}. {2}^{6}} \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{ {2}^{7 + 6} } \\ \\ = \frac{ {2}^{14} }{ {2}^{13} } \\ \\ = {2}^{14 - 13} \\ \\ = {2}^{1} \\ \\ = 2[/tex][tex] \\ [/tex]Nomor 3b[tex] \frac{ {2}^{2} . {2}^{3} . {2}^{4}. {2}^{5} }{ {6}^{2} . {20}^{2} } \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{(2 \times 3) {}^{2}. {(5 \times {2}^{2} )}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2}. {3}^{2}. {5}^{2}. {2}^{4} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2 + 4} . {3}^{2} . {5}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{6}.9.25 } \\ \\ = \frac{ {2}^{14 - 2} }{225} \\ \\ = \frac{ {2}^{12} }{225} \\ \\ = \frac{4096}{225} \\ \\ =18,2[/tex][tex] \\ [/tex]Nomor 3c[tex] \frac{ {6}^{3}. {8}^{4}. {9}^{2} }{ {3}^{5}. {4}^{4}. {2}^{2} } \\ \\ = \frac{ {(2 \times 3)}^{3}. { ({2}^{3} )}^{4}. { ({3}^{2} )}^{2} }{ {3}^{5} . {( {2}^{2}) }^{4}. {2}^{2} } \\ \\ = \frac{ {2}^{3}. {3}^{3}. {2}^{12}. {3}^{4} }{ {3}^{5}. {2}^{8}. {2}^{2} } \\ \\ = {2}^{(3 + 12 )- (8 + 2)} \times {3}^{(3 + 4) - 5} \\ \\ = {2}^{15 - 10} \times {3}^{7 - 5} \\ \\ = {2}^{5} \times {3}^{2} \\ \\ = 32 \times 9 \\ \\ = 288[/tex]](https://id-static.z-dn.net/files/d56/c445b64667de36e9bc8407f2097093ca.jpg)
Semoga dengan pertanyaan yang sudah terjawab oleh Ryzzx dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Thu, 03 Nov 22