NT Exercise: Decimal Expressions1. Prove that a number's decimal expression

Berikut ini adalah pertanyaan dari nursahel26 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

NT Exercise: Decimal Expressions1. Prove that a number's decimal expression has finitely many decimal places if and only if the denominator (after simplification) is in the form of 2^a × 5^b where a and b are nonnegative integers.

2. Prove that the decimal representation of every rational number is eventually periodic.​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Problem 1
Prove that a number's decimal expression has finitely many decimal places if and only if the denominator (after simplification) is in the form of 2^a \times 5^bwhereaandb are nonnegative integers.

Solution

Let q=n/d\in\mathbb{Q}wherenandd are relatively prime numbers, so that n/d can not be further simplified. If a decimal expression of q has FINITELY many decimal places, without loss of generality, we can arbitrarily choose an odd number k \in \mathbb{N}, so that
q=\dfrac{n}{d}=c_0.c_1c_2c_3{\,\dots\,}c_k
(c_0 is the integer part, while .c_1c_2c_3{\,\dots\,}c_kis the fraction part ofq)

Thus,

\begin{aligned}\frac{n}{d}&=10^0c_0+10^{-1}c_1+10^{-2}c_2+10^{-3}c_3+{\dots}+10^{-k}c_k\\&=\frac{c_0}{10^0}+\frac{c_1}{10^1}+\frac{c_2}{10^2}+\frac{c_3}{10^3}+{\dots}+\frac{c_k}{10^k}\\\frac{n}{d}&=\frac{c_0}{10^0}+\frac{c_k}{10^k}+\frac{c_1}{10^1}+\frac{c_{k-1}}{10^{k-1}}+\frac{c_2}{10^2}+\frac{c_{k-2}}{10^{k-2}}\\&\:\;\vdots\ +\frac{c_3}{10^3}+\frac{c_{k-3}}{10^{k-3}}+{\dots}+\frac{c_{(k-1)/2}}{10^{(k-1)/2}}+\frac{c_{(k+1)/2}}{10^{(k+1)/2}}\\\end{aligned}
\begin{aligned}\frac{n}{d}&=\frac{10^kc_0+10^{k-1}c_1+10^{k-2}c_2+{\dots}+10^2c_{k-2}+10c_{k-1}+c_k}{10^k}\\\frac{n}{d}&=\frac{C}{10^k}\implies \frac{10^{k}n}{d}=C\,,\ C\in\mathbb{Z}\\\end{aligned}

Because d\nmid nandC is an integer, dhas to be a factor of10^k, implying d\mid 10^k\implies d\mid (2\times5)^k. Both 2 and 5 are prime numbers. Hence, dhas to be in the form of2^a\times5^bwhereaandb are nonnegative integers (aorb may possibly be 0), and a,b\ \le \ k.  \blacksquare

__________________

Problem 2
Prove that the decimal representation of every rational numberiseventually periodic.​

Solution

If a rational number x is eventually periodic, we can write it as
x=a_0.a_1a_2a_3...a_n\overline{b_1b_2b_3...b_k}
(a_0 is the integer part, a_1a_2a_3...a_n is the non-repeating part, and \overline{b_1b_2b_3...b_k}is the repeating part ofx)

Backward proof: If the decimal representation of x is eventually periodic, then x\in\mathbb{Q} (x is a rational number).

\begin{aligned}x&=a_0.a_1a_2a_3...a_n\overline{b_1b_2b_3...b_k}\\&=a_0.a_1a_2a_3...a_n+\frac{1}{10^n} (0.\overline{b_1b_2b_3...b_k})\\\end{aligned}

a_0.a_1a_2a_3...a_n \in\mathbb{Q}, so it is enough to show that y=0.\overline{b_1b_2b_3...b_k} \in \mathbb{Q}.

\begin{aligned}y&=0.\overline{b_1b_2b_3...b_k}\\&=b_1b_2b_3...b_k\left(\frac{1}{10^k}+\frac{1}{10^{2k}}+\frac{1}{10^{3k}}+{\dots}\right)\\&=\frac{b_1b_2b_3...b_k}{10^k}\underbrace{\left(1+\frac{1}{10^k}+\frac{1}{10^{2k}}+{\dots}\right)}_{\sf geometric\ series}\\&=\frac{b_1b_2b_3...b_k}{10^k}\left(\frac{1}{1-\dfrac{1}{10^k}}\right)\\y&=\frac{b_1b_2b_3...b_k}{10^k-1}\end{aligned}

Both numerator and denominator are positive integers, so y\in\mathbb{Q}, and it proves that x\in\mathbb{Q}.  \blacksquare

Forward proof: If x\in\mathbb{Q} (x is a rational number), then the decimal representation of x is eventually periodic.

Let x=\dfrac{a}{b}\in\mathbb{Q},\ a,b\in\mathbb{Z}.

We can take \displaystyle a_1=\left \lfloor \frac{a}{b} \right \rfloor  and c_0=\dfrac{a}{b}-a_0, so that

\begin{aligned}&\frac{a}{b}=a_0+c_0\ \Rightarrow a=a_0b+r_0\\&\quad{\sf where}\ r_0=bc_0\\\end{aligned}

Take a_1=\left \lfloor 10c_0 \right \rfloorandc_1=10c_0-a_1, so that

\begin{aligned}10r_0&=b(10c_0)\\&=b(a_1+c_1)\\&=a_1b+bc_1\\10r_0&=a_1b+r_1\\&\ {\sf where}\ r_1=bc_1\\\end{aligned}

Trying to do an inductive approach, let's define:

a_k=\left \lfloor 10c_{k-1} \right \rfloorandc_k=10c_{k-1}-a_k, \forall\,k\in\mathbb{N}.

By the same logic as 10r_0, we get:

10r_{k-1}=a_kb+r_k,wherer_k=bc_k

Note that 0 \le 10c_k < 10, implying 0 \le a_k \le 9, \forall k\in\mathbb{N}.

Because 0 \le r_k < b  \forall\,k, there exists m,n\in\mathbb{N}, so that n > m, and r_n = r_m.

Hence, we get

\begin{cases}10r_m=a_{m+1}+r_{m+1}\\10r_n=a_{n+1}+r_{n+1}\end{cases}

By division algorithm, we get a_{m+1}=a_{n+1}andr_{m+1}=r_{n+1}.

So, a_{m+i}=a_{n+i}  \forall\,i\in\mathbb{N}.

Thus x=a_0.a_1a_2a_3...a_m\overline{a_{m+1}a_{m+2}...a_n} is eventually periodic, and it completes the proof.  \blacksquare

Semoga dengan pertanyaan yang sudah terjawab oleh henriyulianto dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Fri, 14 Oct 22