Berikut ini adalah pertanyaan dari Ramaacharuzt19 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
Penjelasan dengan langkah-langkah:
1. Sifat Komutatif (Pertukaran)
1.1 Pengertian Sifat Komutatif
Sifat komutatif adalah sifat operasi hitung terhadap 2 bilangan yang memenuhi pertukaran letak antar bilangan sehingga menghasilkan hasil yang sama. Sifat komutatif juga disebut dengan hukum komutatif. Sifat komutatif dapat dirumuskan sebagai berikut,
a + b = b + a = c
a dan b adalah 2 bilangan yang dioperasikan
c adalah hasil dari operasi hitung
Keterangan: operasi hitung yang memenuhi sifat komutatif menghasilkan hasil yang sama, walaupun letak bilangan yang dihitung saling ditukarkan.
1.2 Sifat Komutatif pada Bilangan & Contohnya
Operasi hitung pada bilangan yang memenuhi sifat komutatif adalah penjumlahan dan perkalian.
1.2.1 Sifat Komutatif pada Penjumlahan
Sifat komutatif pada operasi penjumlahan dapat dirumuskan sebagai berikut,
a + b = b + a = c
Contoh:
2 + 3 = 3 + 2 = 5
karena 2 + 3 = 5 dan 3 + 2 = 5
7 + 6 = 6 + 7 = 13
karena 7 + 6 = 13 dan 6 + 7 = 13
1.2.2 Sifat Komutatif pada Perkalian
Sifat komutatif pada operasi perkalian dapat dirumuskan sebagai berikut,
a × b = b × a = c
Contoh:
3 × 4 = 4 × 3 = 12
Karena 3 × 4 = 12 dan 4 × 3 = 12
5 × 2 = 2 × 5 = 10
Karena 5 × 2 = 10 dan 2 × 5 = 10
1.2.3 Sifat Komutatif tidak berlaku pada Pengurangan dan Pembagian
Sifat komutatif tidak berlaku pada operasi pengurangan dan pembagian bilangan bulat, karena hasil pertukaran bilangan terhadap operasi tersebut tidak menghasilkan nilai yang sama.
Contoh:
7 - 3 = 4 tidak sama dengan 3 - 7 = (-4)
8 : 2 = 4 tidak sama dengan 2 : 8 = 0,25
2. Sifat Asosiatif (Pengelompokan)
2.1 Pengertian Sifat Asosiatif
Sifat asosiatif adalah sifat operasi hitung terhadap 3 bilangan menggunakan bantuan pengelompokan 2 bilangan dengan tanda kurung dan apabila pengelompokan ditukarkan hasil tetap sama. Sifat asosiatif juga disebut dengan hukum asosiatif. Sifat asosiatif dapat dirumuskan sebagai berikut,
(a + b) + c = a + (b + c) = d
a, b, dan c adalah bilangan yang dioperasikan
d adalah hasil operasi bilangan
Keterangan: operasi hitung yang memenuhi sifat asosiatif menghasilkan nilai yang sama, walaupun tanda kurung (pengelompokan) ditukarkan.
2.2 Sifat Asosiatif pada Bilangan & Contohnya
Operasi hitung pada bilangan yang memenuhi sifat asosiatif adalah penjumlahan dan perkalian.
2.2.1 Sifat Asosiatif pada Penjumlahan
Sifat asosiatif pada operasi penjumlahan dapat dirumuskan sebagai berikut,
(a + b) + c = a + (b + c) = d
Contoh:
(1 + 2) + 3 = 1 + (2 + 3) = 6
karena
(1 + 2) + 3 = 3 + 3 = 6
1 + (2 + 3) = 1 + 5 = 6
2.2.2 Sifat Asosiatif pada Perkalian
Sifat asosiatif pada operasi perkalian dapat dirumuskan sebagai berikut,
(a × b) × c = a × (b × c) = d
Contoh:
(2 × 3) × 4 = 2 × (3 × 4) = 24
karena
(2 × 3) × 4 = 6 × 4 = 24
2 × (3 × 4) = 2 × 12 = 24
MAAF KALAU SALAH
Semoga dengan pertanyaan yang sudah terjawab oleh athayaluthfi658 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Sun, 04 Jul 21