Berikut ini adalah pertanyaan dari needmilk13 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas
b.-18, -15, -12, -9
c.-6, -5, -4, -3
d.-4, -1, -2, -5
2. Suku ke 20 dari Un = 2n + 3 adalah .... *
a.25
b.43
c.23
d.34
3. Diketahui suatu barisan aritmetika dengan a = 12 b = -8 maka U10 dari barisan tersebut adalah .... *
a.-68
b.-62
c.-60
d.86
4. Diketahui suatu barisan aritmetika dengan a = 10 U8 = 73 maka beda dari barisan tersebut adalah .... *
a.6
b.7
c.8
d.9
5. Diketahui suatu barisan 0, 2x, 4x, .... Suku ke 16 dari barisan tersebut adalah .... *
a.15x
b.30x
c.20x
d.10x
6. Diketahui suatu barisan 5, 5½, 6, 6½, ... Suku ke 20 dari barisan tersebut adalah .... *
a.14
b.14,5
c.15
d.15,5
7. Jumlah 20 suku pertama dari deret aritmetika 40 + 35 + 30 + .... Adalah ... *
a.-150
b.150
c.-55
d.55
8. Diketahui suatu barisan aritmetika a = 1 Un = 37 dan U6 + U7 = 35 maka nilai n dari barisan tersebut adalah .... *
a.9
b.11
c. 13
d.19
9. Jumlah 13 suku pertama dari deret aritmetika 10 + 9½ + 9 + 8½ + 8 + ... Adalah ... *
a.4
b.19
c.91
d.-91
10. Diketahui suatu barisan aritmetika a = 0 Un = 50 U7 + U8 =65 maka nilai Sn dari barisan tersebut adalah .... *
a.275
b.257
c.752
d.725
11. Rumus suku ke n dari barisan aritmetika 4, 7, 10, 13, 16, ... Adalah ... *
a.Un = 3n - 1
b.Un = 4n
c.Un = 4n + 1
d.Un = 3n + 1
12. Diketahui suatu barisan geometri 1, 3, 9, 27, ... Suku ke 10 dari barisan tersebut adalah ... *
a.2187
b.19683
c.6561
d.59.049
13. Diketahui suatu barisan geometri 5, 10, 20, 40, ... maka 640 adalah suku ke ... *
a.6
b.7
c.8
d.9
14. Jumlah 8 suku pertama dari deret geometri 5 + 15 + 45 + ... Adalah .... *
a.10.935
b.3645
c.10.395
d.6345
15. Suatu barisan geometri diketahui a = 4 r = -2 maka U8 dari barisan tersebut adalah ...
a.512
b.215
c.-512
d.152
16. Diketahui suatu barisan geometri dengan U2 = 6 U3 = 3750 maka rasio dari barisan tersebut adalah ...
a.652
b.625
c.265
d.256
17. Diketahui suatu barisan geometri -2, -6, -28, -54, ... Suku ke 9 dari barisan tersebut adalah ..
a.13.122
b.11.322
c.13.221
d.-13.122
18. Suku pertama suatu barisan geometri adalah 1024 dan rasionya ½, maka suku ke 6 pada barisan tersebut adalah ....
a.32
b.23
c.64
d.16
19. Diketahui suatu deret geometri 125 + 25 + 5 + ... Jumlah dari 6 suku pertama adalah .... *
a.165,24
b.156,42
c.165,42
d.156,24
20. Diketahui suatu barisan geometri, jika r = -2 n = 8 Un = 64 maka nilai a adalah .... *
a.-½
b.½
c.-2
d.2
bantuin jawab dong, kumpul nya jam 1 nanti :"(
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
Empat suku pertama dari Un = 3n – 7 adalah –4, –1, 2, 5
Pembahasan
1. Empat suku pertama dari Un = 3n – 7 adalah
Jawab
- U₁ = 3(1) – 7 = –4
- U₂ = 3(2) – 7 = –1
- U₃ = 3(3) – 7 = 2
- U₄ = 3(4) – 7 = 5
A
2. Suku ke 20 dari Un = 2n + 3 adalah ....
Jawab
U₂₀ = 2(20) + 3
U₂₀ = 40 + 3
U₂₀ = 43
B
3. Diketahui suatu barisan aritmetika dengan a = 12, b = –8 maka U₁₀ dari barisan tersebut adalah
Jawab
U₁₀ = a + 9b
U₁₀ = 12 + 9(–8)
U₁₀ = 12 – 72
U₁₀ = –60
C
4. Diketahui suatu barisan aritmetika dengan a = 10, U₈ = 73 maka beda dari barisan tersebut adalah
Jawab
U₈ = 73
a + 7b = 73
10 + 7b = 73
7b = 63
b = 9
D
5. Diketahui suatu barisan 0, 2x, 4x, .... Suku ke 16 dari barisan tersebut adalah ....
Jawab
- a = 0
- b = 2x
Suku ke 16 adalah
U₁₆ = a + 15b
U₁₆ = 0 + 15(2x)
U₁₆ = 30x
B
6. Diketahui suatu barisan 5, 5½, 6, 6½, ... Suku ke 20 dari barisan tersebut adalah
Jawab
- a = 5
- b = ½
Suku ke 20 adalah
U₂₀ = a + 19b
U₂₀ = 5 + 19(½)
U₂₀ = 5 + 9,5
U₂₀ = 14,5
B
7. Jumlah 20 suku pertama dari deret aritmetika 40 + 35 + 30 + .... adalah
Jawab
- a = 40
- b = –5
Jumlah 20 suku pertamaadalah
Sn = (2a + (n – 1)b)
S₂₀ = (2(40) + (20 – 1)(–5))
S₂₀ = 10 (80 + (19)(–5))
S₂₀ = 10 (80 – 95)
S₂₀ = 10 (–15)
S₂₀ = –150
A
8. Diketahui suatu barisan aritmetika a = 1, Un = 37 dan U₆ + U₇ = 35 maka nilai n dari barisan tersebut adalah
Jawab
U₆ + U₇ = 35
(a + 5b) + (a + 6b) = 35
2a + 11b = 35
2(1) + 11b = 35
11b = 33
b = 3
Nilai n adalah
Un = 37
a + (n – 1)b = 37
1 + (n – 1)3 = 37
1 + 3n – 3 = 37
3n = 39
n = 13
C
9. Jumlah 13 suku pertama dari deret aritmetika 10 + 9½ + 9 + 8½ + 8 + ... adalah
Jawab
- Suku pertama = a = 10
- Beda = b = 9 ½ – 10 = – ½
Jumlah 13 suku pertama adalah
Sn = (2a + (n – 1)b)
S₁₃ = (2(10) + (13 – 1)(–½))
S₁₃ = (20 + (12)(–½))
S₁₃ = (20 – 6)
S₁₃ = (14)
S₁₃ = 91
C
10. Diketahui suatu barisan aritmetika a = 0, Un = 50, U₇ + U₈ = 65 maka nilai Sn dari barisan tersebut adalah
Jawab
U₇ + U₈ = 65
(a + 6b) + (a + 7b) = 65
2a + 13b = 65
2(0) + 13b = 65
13b = 65
b = 5
Nilai n
Un = 50
a + (n – 1)b = 50
0 + (n – 1)5 = 50
(n – 1) =
(n – 1) = 10
n = 11
Jadi nilai Sn adalah
Sn = (a + Un)
Sn = (0 + 50)
Sn = 11 (25)
Sn = 275
A
11. Rumus suku ke n dari barisan aritmetika 4, 7, 10, 13, 16, ... adalah
Jawab
- a = 4
- b = 3
Rumus suku ke n adalah
Un = a + (n – 1)b
Un = 4 + (n – 1)3
Un = 4 + 3n – 3
Un = 3n + 1
D
12. Diketahui suatu barisan geometri 1, 3, 9, 27, ... Suku ke 10 dari barisan tersebut adalah
Jawab
- a = 1
- r = = 3
Suku ke 10 adalah
U₁₀ = ar⁹
U₁₀ = 1(3)⁹
U₁₀ = 19.683
B
13. Diketahui suatu barisan geometri 5, 10, 20, 40, ... maka 640 adalah suku ke
Jawab
- a = 5
- r = = 2
arⁿ⁻¹ = 640
5(2)ⁿ⁻¹ = 640
2ⁿ⁻¹ =
2ⁿ⁻¹ = 128
2ⁿ⁻¹ = 2⁷
n – 1 = 7
n = 8
C
14. Jumlah 8 suku pertama dari deret geometri 5 + 15 + 45 + ... adalah
Jawab
- a = 5
- r = = 3
Jumlah 8 suku pertama dari deret tersebut adalah
Sn =
S₈ =
S₈ =
S₈ =
S₈ = 16.400
Jawaban tak ada
Kemungkinan ada RALAT, yang ditanyakan adalah suku ke 8,
U₈ = ar⁷
U₈ = 5(3)⁷
U₈ = 5(2187)
U₈ = 10.935
A
15. Suatu barisan geometri diketahui a = 4, r = –2 maka U₈ dari barisan tersebut adalah
Jawab
U₈ = ar⁷
U₈ = 4(–2)⁷
U₈ = 4(–128)
U₈ = –512
C
16. Diketahui suatu barisan geometri dengan U₂ = 6, U₃ = 3750 maka rasio dari barisan tersebut adalah
Jawab
= 625
r = 625
B
17. Diketahui suatu barisan geometri –2, –6, –28, –54, ... Suku ke 9 dari barisan tersebut adalah
Jawab
Ada RALAT yaitu –2, –6, –18, –54
- a = –2
- r = = 3
U₉ = ar⁸
U₉ = –2(3)⁸
U₉ = –2(6561)
U₉ = –13.122
D
18. Suku pertama suatu barisan geometri adalah 1024 dan rasionya ½, maka suku ke 6 pada barisan tersebut adalah
Jawab
U₆ = ar⁵
U₆ = 1024 (½)⁵
U₆ = 1024 ()
U₆ = 32
A
19. Diketahui suatu deret geometri 125 + 25 + 5 + ... Jumlah dari 6 suku pertama adalah
Jawab
tiga suku berikutnya adalah
- 5 ÷ 5 = 1
- 1 ÷ 5 = 0,2
- 0,2 ÷ 5 = 0,04
Jumlah 6 suku pertama deret tersebut adalah
= 125 + 25 + 5 + 1 + 0,2 + 0,04
= 156,24
D
20. Diketahui suatu barisan geometri, jika r = –2, n = 8, Un = 64 maka nilai a adalah
Jawab
U₈ = 64
ar⁷ = 64
a(–2)⁷ = 64
a(–128) = 64
a =
a =
A
Pelajari lebih lanjut
Contoh soal lain tentang pola bilangan
- 10 macam pola bilangan: yomemimo.com/tugas/16710456
- Hasil deret 3 6 10 20 24 48 52: yomemimo.com/tugas/20936582
- Pola bilangan persegi panjang: yomemimo.com/tugas/30276398
------------------------------------------------
Detil Jawaban
Kelas : 8
Mapel : Matematika
Kategori : Pola Bilangan
Kode : 8.2.1
#AyoBelajar
Semoga dengan pertanyaan yang sudah terjawab oleh arsetpopeye dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Sun, 08 Nov 20