Diketahui fungsi f(x)=3x-7. Tentukan invers fungsi f(x)?​

Berikut ini adalah pertanyaan dari zhengvincent30 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Diketahui fungsi f(x)=3x-7. Tentukan invers fungsi f(x)?​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Diketahui fungsi f(x)=3x-7

Maka fungsi inversnya ialah

\boxed{\bf{f\left(x\right)^{-1}=\frac{x+7}{3}}}

 \:

Pendahuluan

A.  Definisi Fungsi

Fungsi dari himpunan A ke Himpunan B => relasi yang memetakan setiap anggota A dengan tetap satu anggota B.

 \:

 \boxed{\boxed{\mathbf{B.\ \ Operasi\ Aljabar}}}

 \scriptsize\boxed{\begin{array}{c}\mathbf{1.\ Penjumlahan\ dan\ Pengurangan\ Fungsi}\\\mathbf{\left(f\pm g\right)\left(x\right)=f\left(x\right)\pm g\left(x\right)}\\\\\mathbf{2.\ Perkalian\ Fungsi}\\\mathbf{\left(f\ .\ g\right)\left(x\right)=f\left(x\right)g\left(x\right)}\\\\\mathbf{3.\ Pembagian\ Fungsi}\\\mathbf{\left(\frac{f}{g}\right)\left(x\right)=\frac{f\left(x\right)}{g\left(x\right)}}\\\\\mathbf{4.\ Perpangkatan}\\\mathbf{\left(f\left(x\right)\right)^{n}=f^{n}\left(x\right)}\end{array}}

 \:

 \boxed{\boxed{\mathbf{C.\ \ Fungsi\ Komposisi}}}

 \scriptsize\mathbf{1.\ Fungsi\ komposisi\ dapat\ ditulis\ sebagai\ :}\\\\\mathbf{\left(f \circ g\right)\left(x\right)=f\left(g\left(x\right)\right)\to komposisi\ g}\\\mathbf{\left(g \circ f\right)\left(x\right)=g\left(f\left(x\right)\right)\to komposisi\ f}

 \boxed{\underbrace{\mathbf{x\to_{g}\ g\left(x\right)\to_{f}\ f\left(g\left(x\right)\right)}}_{\mathbf{\left(f\circ g\right)\left(x\right)=f\left(g\left(x\right)\right)}}}

 \:

 \scriptsize\mathbf{2.\ Sifat\ fungsi\ komposisi,\ antara\ lain\ :}\\\\\mathbf{a.\ Tidak\ komutatif,\ \left(f \circ g\right)\left(x\right)\ne\left(g \circ f\right)\left(x\right).}\\\mathbf{b.\ Asosiatif,\ \left(f \circ \left(g \circ h\right)\right)\left(x\right)=\left(\left(f \circ g\right) \circ h\right)\left(x\right).}\\\mathbf{c.\ Terdapat\ unsur\ identitas\ \left(I\right)\ \left(x\right),\ }\\\mathbf{\left(f \circ I\right)\left(x\right)=\left(I \circ f\right)\left(x\right)=f\left(x\right).}

 \:

\boxed{\boxed{\mathbf{D. \ \ Fungsi \ Invers}}}

\small\mathbf{1.) \ f^{-1} (x) \to invers\ dari\ fungsi\ f\left(x\right).}

\boxed{\mathbf{\boxed{\mathbf{f^{-1}\left(y\right)=x}}\ _{f^{-1}} \rightleftharpoons ^{f} \ \boxed{\mathbf{y=f\left(x\right)}}}}

 \:

\scriptsize\mathbf{2.) \ Invers\ dapat\ ditentukan\ dengan\ mengubah\ bentuk}

\scriptsize\mathbf{f\left(x\right)=y=...} \ \scriptsize\mathbf{menjadi} \ \scriptsize\mathbf{f^{-1}\left(y\right)=x=...}

 \:

\mathbf{3.)\ Sifat\ fungsi \ invers \ :}

\mathbf{a.\ \left(f \circ f^{-1}\right)\left(x\right)=\left(f^{-1} \circ f\right)\left(x\right)=I\left(x\right)}

\mathbf{b.\ \left(f \circ g\right)^{-1}\left(x\right)=\left(g^{-1} \circ f^{-1}\right)\left(x\right)}

\mathbf{c.\ \left(f \circ g\right)\left(x\right)=h\left(x\right)\to f\left(x\right)=\left(h \circ g^{-1}\right)\left(x\right)}

 \:

\mathbf{4.\ Rumus \ Cepat :}

\small\boxed{\mathbf{f\left(x\right)=\frac{ax+b}{cx+d}\to f^{-1}\left(x\right)=\frac{-dx+b}{cx-a}}}

 \:

 \:

Pembahasan

Diketahui :

fungsi f(x)=3x-7

Ditanya :

Tentukan invers dari fungsi f(x)?​

Jawaban :

Untuk menjawab soal ini (mencari fungsi invers), kita menggunakan permisalan

f(x) = y

↔↔↔↔↔↔↔↔↔↔↔↔

\bf{f\left(x\right)=y}

\bf{3x-7=y}

\bf{3x=y+7}

\bf{x=\frac{y+7}{3}}

↔↔↔↔↔↔Kesimpulan

maka

\boxed{\bf{f\left(x\right)^{-1}=\frac{x+7}{3}}}

 \:

 \:

Pelajari Lebih Lanjut :

 \:

 \:

Detail Jawaban

Kelas : 11 SMA

Bab : 2

Sub Bab : Bab 6 - Fungsi

Kode Kategorisasi : 11.2.6

Kata Kunci : Fungsi invers.

Semoga dengan pertanyaan yang sudah terjawab oleh Sinogen dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Sun, 04 Sep 22