Diketahui P = {x|x<5,x € Bilangan Asli} dan Q =

Berikut ini adalah pertanyaan dari khadindewangga pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Diketahui P = {x|x<5,x € Bilangan Asli} dan Q = {a,b,c}. Banyaknya pemetaan yang mungkin dari P ke Q adalah ...​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Diketahui P = {x | x < 5, x ∈ Bilangan Asli} dan Q = {a, b, c}. Banyaknya pemetaan yang mungkin dari P ke Q adalah 64

\\

ᴘᴇᴍʙᴀʜᴀꜱᴀɴ

Relasi adalah suatu aturan yang menghubungkan anggota himpunan A dengan anggota himpunan B. Relasi dapat dinyatakan dengan tiga cara yaitu.

  1. Diagram Panah
  2. Diagram Cartesius
  3. Diagram Pasangan Berurutan

\\

Fungsi (pemetaan) adalah relasi khusus yang menghubungkan setiap anggota himpunan A (domain) dengan salah satu anggota himpunan B (kodomain). Jika f : x → ax + b, maka bentuk fungsinya adalah f(x) = ax + b

\\

Banyak fungsi himpunan A ke B

  • {\boxed{\sf{n(A)^{n(B)}}}}

Banyak fungsi himpunan B ke A

  • {\boxed{\sf{n(B)^{n(A)}}}}

Banyak korespodensi satu-satu himpunan A dan B

  • {\boxed{\sf{n!}}}dengan n(A) = n(B) = n

\\

ᴘᴇɴʏᴇʟᴇꜱᴀɪᴀɴ

Diketahui :

  • P = {x | x < 5, x ∈ Bilangan Asli}
  • Q = {a, b, c}

\\

Ditanya :

  • Banyaknya pemetaan P ke Q …?

\\

Jawaban :

P = {x | x < 5, x ∈ Bilangan Asli}

P = {1, 2, 3, 4}

n(P) = 4

\\

Q = {a, b, c}

n(Q) = 3

\\

Banyaknya pemetaan P ke Q

{\sf{n(P)^{n(Q)}}}

{\sf{ = 4^3}}

{\sf{ = 64}}

\\

ᴋᴇꜱɪᴍᴘᴜʟᴀɴ

Jadi, banyaknya pemetaan yang mungkin dari P ke Q adalah 64

\\

ᴘᴇʟᴀᴊᴀʀɪ ʟᴇʙɪʜ ʟᴀɴᴊᴜᴛ

\\

ᴅᴇᴛᴀɪʟ ᴊᴀᴡᴀʙᴀɴ

Mapel : Matematika

Kelas : VIII SMP

Bab : 2 – Relasi dan Fungsi

Kode Soal : 2

Kode Kategori : 8.2.2

Kata Kunci : Banyak pemetaan himpunan P ke Q

Semoga dengan pertanyaan yang sudah terjawab oleh JΟY dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Wed, 01 Jun 22