Q. Terlampir![tex]\bold{\underline{Rules \: :}}[/tex][tex]✎ \: No \: Calcu \: ☑[/tex][tex]✎\:

Berikut ini adalah pertanyaan dari ArtX1 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Q. Terlampir!\bold{\underline{Rules \: :}}
✎ \: No \: Calcu \: ☑
✎\: No \: bahasa \: alien \: ☑︎
✎ \: No \: Jawab \: Dikomen \: ☑︎
✎ \: Memakai \: Cara \: ☑︎
Q. Terlampir![tex]\bold{\underline{Rules \: :}}[/tex][tex]✎ \: No \: Calcu \: ☑[/tex][tex]✎\: No \: bahasa \: alien \: ☑︎ [/tex][tex]✎ \: No \: Jawab \: Dikomen \: ☑︎ [/tex][tex]✎ \: Memakai \: Cara \: ☑︎[/tex]​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawab:

99/8

Penjelasan :

Catatan : liat jawaban di web atau liat di gambar

x+y = 1, x^2+y^2 = 2\to x = \sqrt{2}\cos(t), y = \sqrt{2}\sin(t)\\\sqrt{2} (\cos(t)+\sin(t)) = 1\\ \cos(t-\tfrac{\pi}{4}) = \dfrac{1}{2}\to t = \dfrac{7\pi}{12}\cup -\dfrac{\pi}{12}\\x_1 = \sqrt{2} \cdot \cos(\tfrac{7\pi}{12}), y_1= \sqrt{2} \cdot \sin(\tfrac{7\pi}{12})\\x_1 = \dfrac{1-\sqrt{3} }{2}, y_1 = \dfrac{1+\sqrt{3}}{2} = -\dfrac{1}{1-\sqrt{3}} = -\dfrac{1}{2x_1}

jika x1 dan y1 diubah menjadi persamaan kuadrat :

(2t-(1+\sqrt{3}))(2t - (1-\sqrt{3})) = 4t^2 - 4t -2 = 0\to t^2 = t+\dfrac{1}{2}, \dfrac{1}{t} = 2t-2\\-\dfrac{1}{2t}= 1 - t\to \dfrac{1}{4t^2} = \dfrac{1}{2}-\dfrac{1}{2t} = \dfrac{3}{2}-t

t^2 = t+\dfrac{1}{2} = x^2, \dfrac{1}{t} = 2t-2\\-\dfrac{1}{2t}= 1 - t\to \dfrac{1}{4t^2} = \dfrac{1}{2}-\dfrac{1}{2t} = \dfrac{3}{2}-t = y^2

x^2+y^2 = t+\dfrac{1}{2}+\dfrac{3}{2}-t = 2\\

t^3 = t^2+\dfrac{t}{2} = t+\dfrac{1}{2}+\dfrac{t}{2} = \dfrac{3}{2}t +\dfrac{1}{2}\\\left(-\dfrac{1}{2t}\right)^3=\dfrac{1}{2}-\dfrac{3}{4t} = \dfrac{1}{2} - \dfrac{3}{2}(t-1) = 2 - \dfrac{3}{2}t\\\\t^4 = \dfrac{3t^2+t}{2} = 2t + \dfrac{3}{4}\\\left(-\dfrac{1}{2t}\right)^4=\dfrac{3}{4}-\dfrac{1}{t} = \dfrac{3}{4} - (2t-2) = \dfrac{11}{4}-2t\\t^5 = 2t^2+\dfrac{3}{4}t = \dfrac{11}{4}t+1\\\left(-\dfrac{1}{2t}\right)^5= \dfrac{15-11t}{4}

a_n = \{1,1, \dfrac{3}{2},2,\dfrac{11}{4}\}, b_n = \{(0,0),(\dfrac{1}{2},\dfrac{3}{2}),(\dfrac{1}{2},2),(\dfrac{3}{4},\dfrac{11}{4}), (1,\dfrac{15}{4})\}

a_n = b_{n-1}(y), n > 2

b_n(x) = \dfrac{a_{n-1}}{2}, b_n(y) = a_n + b_n(x) = \dfrac{2a_n+a_{n-1}}{2}\\b_n(x)+b_n(y) = x^n+y^n = a_n+a_{n-1}\\b_{11}(x)+b_{11}(y) = x^{11}+y^{11} = a_{11}+a_{10} = b_9(y)+b_8(y)\\x^{11}+y^{11} = \dfrac{2a_9+a_8+2a_8+a_7}{2}= \dfrac{2b_8(y)+3b_7(y)+b_6(y)}{2}\\x^{11}+y^{11} =\dfrac{2a_8+a_7+\tfrac{1}{2}(6a_7+3a_6+2a_6+a_5)}{2} \\ =\dfrac{2b_7(y)+b_6(y)}{2} + \dfrac{6b_6(y)+5b_5(y)+b_4(y)}{4} = \dfrac{4b_7(y)+8b_6(y)+\tfrac{86}{4}}{4}\\

x^{11}+y^{11} = \dfrac{2a_7+a_6}{2} + \dfrac{43}{8} = \dfrac{2b_6(y)+b_5(y)}{2}+\dfrac{43}{8} = \dfrac{2a_6+a_5+\tfrac{15}{4}}{2}+\dfrac{43}{8}\\= b_5(y) + \dfrac{69}{8} \; \to \text{(Lucky number)}

\Huge{\boxed{\boxed{\boldsymbol{x^{11}+y^{11} = \dfrac{15}{4}+\dfrac{69}{8} = \dfrac{99}{8}} }}}

Jawab:99/8Penjelasan :Catatan : liat jawaban di web atau liat di gambar [tex]x+y = 1, x^2+y^2 = 2\to x = \sqrt{2}\cos(t), y = \sqrt{2}\sin(t)\\\sqrt{2} (\cos(t)+\sin(t)) = 1\\ \cos(t-\tfrac{\pi}{4}) = \dfrac{1}{2}\to t = \dfrac{7\pi}{12}\cup -\dfrac{\pi}{12}\\x_1 = \sqrt{2} \cdot \cos(\tfrac{7\pi}{12}), y_1= \sqrt{2} \cdot \sin(\tfrac{7\pi}{12})\\x_1 = \dfrac{1-\sqrt{3} }{2}, y_1 = \dfrac{1+\sqrt{3}}{2} = -\dfrac{1}{1-\sqrt{3}} = -\dfrac{1}{2x_1}[/tex]jika x1 dan y1 diubah menjadi persamaan kuadrat :[tex](2t-(1+\sqrt{3}))(2t - (1-\sqrt{3})) = 4t^2 - 4t -2 = 0\to t^2 = t+\dfrac{1}{2}, \dfrac{1}{t} = 2t-2\\-\dfrac{1}{2t}= 1 - t\to \dfrac{1}{4t^2} = \dfrac{1}{2}-\dfrac{1}{2t} = \dfrac{3}{2}-t[/tex][tex]t^2 = t+\dfrac{1}{2} = x^2, \dfrac{1}{t} = 2t-2\\-\dfrac{1}{2t}= 1 - t\to \dfrac{1}{4t^2} = \dfrac{1}{2}-\dfrac{1}{2t} = \dfrac{3}{2}-t = y^2[/tex][tex]x^2+y^2 = t+\dfrac{1}{2}+\dfrac{3}{2}-t = 2\\[/tex][tex]t^3 = t^2+\dfrac{t}{2} = t+\dfrac{1}{2}+\dfrac{t}{2} = \dfrac{3}{2}t +\dfrac{1}{2}\\\left(-\dfrac{1}{2t}\right)^3=\dfrac{1}{2}-\dfrac{3}{4t} = \dfrac{1}{2} - \dfrac{3}{2}(t-1) = 2 - \dfrac{3}{2}t\\\\t^4 = \dfrac{3t^2+t}{2} = 2t + \dfrac{3}{4}\\\left(-\dfrac{1}{2t}\right)^4=\dfrac{3}{4}-\dfrac{1}{t} = \dfrac{3}{4} - (2t-2) = \dfrac{11}{4}-2t\\t^5 = 2t^2+\dfrac{3}{4}t = \dfrac{11}{4}t+1\\\left(-\dfrac{1}{2t}\right)^5= \dfrac{15-11t}{4}[/tex][tex]a_n = \{1,1, \dfrac{3}{2},2,\dfrac{11}{4}\}, b_n = \{(0,0),(\dfrac{1}{2},\dfrac{3}{2}),(\dfrac{1}{2},2),(\dfrac{3}{4},\dfrac{11}{4}), (1,\dfrac{15}{4})\}[/tex][tex]a_n = b_{n-1}(y), n > 2[/tex][tex]b_n(x) = \dfrac{a_{n-1}}{2}, b_n(y) = a_n + b_n(x) = \dfrac{2a_n+a_{n-1}}{2}\\b_n(x)+b_n(y) = x^n+y^n = a_n+a_{n-1}\\b_{11}(x)+b_{11}(y) = x^{11}+y^{11} = a_{11}+a_{10} = b_9(y)+b_8(y)\\x^{11}+y^{11} = \dfrac{2a_9+a_8+2a_8+a_7}{2}= \dfrac{2b_8(y)+3b_7(y)+b_6(y)}{2}\\x^{11}+y^{11} =\dfrac{2a_8+a_7+\tfrac{1}{2}(6a_7+3a_6+2a_6+a_5)}{2} \\ =\dfrac{2b_7(y)+b_6(y)}{2} + \dfrac{6b_6(y)+5b_5(y)+b_4(y)}{4} = \dfrac{4b_7(y)+8b_6(y)+\tfrac{86}{4}}{4}\\[/tex][tex]x^{11}+y^{11} = \dfrac{2a_7+a_6}{2} + \dfrac{43}{8} = \dfrac{2b_6(y)+b_5(y)}{2}+\dfrac{43}{8} = \dfrac{2a_6+a_5+\tfrac{15}{4}}{2}+\dfrac{43}{8}\\= b_5(y) + \dfrac{69}{8} \; \to \text{(Lucky number)}[/tex][tex]\Huge{\boxed{\boxed{\boldsymbol{x^{11}+y^{11} = \dfrac{15}{4}+\dfrac{69}{8} = \dfrac{99}{8}} }}}[/tex]

Semoga dengan pertanyaan yang sudah terjawab oleh ridhovictor4 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Thu, 22 Sep 22