big point?special BA?silahkan..​

Berikut ini adalah pertanyaan dari julfanajwan35 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Big point?
special BA?
silahkan..​
big point?special BA?silahkan..​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

mohon koreksinya yaa, hehee

semoga betul^

Nomor 3a[tex] \frac{ {2}^{2}. {2}^{3} . {2}^{4}. {2}^{5}}{ {2}^{7}. {2}^{6}} \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{ {2}^{7 + 6} } \\ \\ = \frac{ {2}^{14} }{ {2}^{13} } \\ \\ = {2}^{14 - 13} \\ \\ = {2}^{1} \\ \\ = 2[/tex][tex] \\ [/tex]Nomor 3b[tex] \frac{ {2}^{2} . {2}^{3} . {2}^{4}. {2}^{5} }{ {6}^{2} . {20}^{2} } \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{(2 \times 3) {}^{2}. {(5 \times {2}^{2} )}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2}. {3}^{2}. {5}^{2}. {2}^{4} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2 + 4} . {3}^{2} . {5}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{6}.9.25 } \\ \\ = \frac{ {2}^{14 - 2} }{225} \\ \\ = \frac{ {2}^{12} }{225} \\ \\ = \frac{4096}{225} \\ \\ =18,2[/tex][tex] \\ [/tex]Nomor 3c[tex] \frac{ {6}^{3}. {8}^{4}. {9}^{2} }{ {3}^{5}. {4}^{4}. {2}^{2} } \\ \\ = \frac{ {(2 \times 3)}^{3}. { ({2}^{3} )}^{4}. { ({3}^{2} )}^{2} }{ {3}^{5} . {( {2}^{2}) }^{4}. {2}^{2} } \\ \\ = \frac{ {2}^{3}. {3}^{3}. {2}^{12}. {3}^{4} }{ {3}^{5}. {2}^{8}. {2}^{2} } \\ \\ = {2}^{(3 + 12 )- (8 + 2)} \times {3}^{(3 + 4) - 5} \\ \\ = {2}^{15 - 10} \times {3}^{7 - 5} \\ \\ = {2}^{5} \times {3}^{2} \\ \\ = 32 \times 9 \\ \\ = 288[/tex]Nomor 3a[tex] \frac{ {2}^{2}. {2}^{3} . {2}^{4}. {2}^{5}}{ {2}^{7}. {2}^{6}} \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{ {2}^{7 + 6} } \\ \\ = \frac{ {2}^{14} }{ {2}^{13} } \\ \\ = {2}^{14 - 13} \\ \\ = {2}^{1} \\ \\ = 2[/tex][tex] \\ [/tex]Nomor 3b[tex] \frac{ {2}^{2} . {2}^{3} . {2}^{4}. {2}^{5} }{ {6}^{2} . {20}^{2} } \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{(2 \times 3) {}^{2}. {(5 \times {2}^{2} )}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2}. {3}^{2}. {5}^{2}. {2}^{4} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2 + 4} . {3}^{2} . {5}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{6}.9.25 } \\ \\ = \frac{ {2}^{14 - 2} }{225} \\ \\ = \frac{ {2}^{12} }{225} \\ \\ = \frac{4096}{225} \\ \\ =18,2[/tex][tex] \\ [/tex]Nomor 3c[tex] \frac{ {6}^{3}. {8}^{4}. {9}^{2} }{ {3}^{5}. {4}^{4}. {2}^{2} } \\ \\ = \frac{ {(2 \times 3)}^{3}. { ({2}^{3} )}^{4}. { ({3}^{2} )}^{2} }{ {3}^{5} . {( {2}^{2}) }^{4}. {2}^{2} } \\ \\ = \frac{ {2}^{3}. {3}^{3}. {2}^{12}. {3}^{4} }{ {3}^{5}. {2}^{8}. {2}^{2} } \\ \\ = {2}^{(3 + 12 )- (8 + 2)} \times {3}^{(3 + 4) - 5} \\ \\ = {2}^{15 - 10} \times {3}^{7 - 5} \\ \\ = {2}^{5} \times {3}^{2} \\ \\ = 32 \times 9 \\ \\ = 288[/tex]Nomor 3a[tex] \frac{ {2}^{2}. {2}^{3} . {2}^{4}. {2}^{5}}{ {2}^{7}. {2}^{6}} \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{ {2}^{7 + 6} } \\ \\ = \frac{ {2}^{14} }{ {2}^{13} } \\ \\ = {2}^{14 - 13} \\ \\ = {2}^{1} \\ \\ = 2[/tex][tex] \\ [/tex]Nomor 3b[tex] \frac{ {2}^{2} . {2}^{3} . {2}^{4}. {2}^{5} }{ {6}^{2} . {20}^{2} } \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{(2 \times 3) {}^{2}. {(5 \times {2}^{2} )}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2}. {3}^{2}. {5}^{2}. {2}^{4} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2 + 4} . {3}^{2} . {5}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{6}.9.25 } \\ \\ = \frac{ {2}^{14 - 2} }{225} \\ \\ = \frac{ {2}^{12} }{225} \\ \\ = \frac{4096}{225} \\ \\ =18,2[/tex][tex] \\ [/tex]Nomor 3c[tex] \frac{ {6}^{3}. {8}^{4}. {9}^{2} }{ {3}^{5}. {4}^{4}. {2}^{2} } \\ \\ = \frac{ {(2 \times 3)}^{3}. { ({2}^{3} )}^{4}. { ({3}^{2} )}^{2} }{ {3}^{5} . {( {2}^{2}) }^{4}. {2}^{2} } \\ \\ = \frac{ {2}^{3}. {3}^{3}. {2}^{12}. {3}^{4} }{ {3}^{5}. {2}^{8}. {2}^{2} } \\ \\ = {2}^{(3 + 12 )- (8 + 2)} \times {3}^{(3 + 4) - 5} \\ \\ = {2}^{15 - 10} \times {3}^{7 - 5} \\ \\ = {2}^{5} \times {3}^{2} \\ \\ = 32 \times 9 \\ \\ = 288[/tex]Nomor 3a[tex] \frac{ {2}^{2}. {2}^{3} . {2}^{4}. {2}^{5}}{ {2}^{7}. {2}^{6}} \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{ {2}^{7 + 6} } \\ \\ = \frac{ {2}^{14} }{ {2}^{13} } \\ \\ = {2}^{14 - 13} \\ \\ = {2}^{1} \\ \\ = 2[/tex][tex] \\ [/tex]Nomor 3b[tex] \frac{ {2}^{2} . {2}^{3} . {2}^{4}. {2}^{5} }{ {6}^{2} . {20}^{2} } \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{(2 \times 3) {}^{2}. {(5 \times {2}^{2} )}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2}. {3}^{2}. {5}^{2}. {2}^{4} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2 + 4} . {3}^{2} . {5}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{6}.9.25 } \\ \\ = \frac{ {2}^{14 - 2} }{225} \\ \\ = \frac{ {2}^{12} }{225} \\ \\ = \frac{4096}{225} \\ \\ =18,2[/tex][tex] \\ [/tex]Nomor 3c[tex] \frac{ {6}^{3}. {8}^{4}. {9}^{2} }{ {3}^{5}. {4}^{4}. {2}^{2} } \\ \\ = \frac{ {(2 \times 3)}^{3}. { ({2}^{3} )}^{4}. { ({3}^{2} )}^{2} }{ {3}^{5} . {( {2}^{2}) }^{4}. {2}^{2} } \\ \\ = \frac{ {2}^{3}. {3}^{3}. {2}^{12}. {3}^{4} }{ {3}^{5}. {2}^{8}. {2}^{2} } \\ \\ = {2}^{(3 + 12 )- (8 + 2)} \times {3}^{(3 + 4) - 5} \\ \\ = {2}^{15 - 10} \times {3}^{7 - 5} \\ \\ = {2}^{5} \times {3}^{2} \\ \\ = 32 \times 9 \\ \\ = 288[/tex]Nomor 3a[tex] \frac{ {2}^{2}. {2}^{3} . {2}^{4}. {2}^{5}}{ {2}^{7}. {2}^{6}} \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{ {2}^{7 + 6} } \\ \\ = \frac{ {2}^{14} }{ {2}^{13} } \\ \\ = {2}^{14 - 13} \\ \\ = {2}^{1} \\ \\ = 2[/tex][tex] \\ [/tex]Nomor 3b[tex] \frac{ {2}^{2} . {2}^{3} . {2}^{4}. {2}^{5} }{ {6}^{2} . {20}^{2} } \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{(2 \times 3) {}^{2}. {(5 \times {2}^{2} )}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2}. {3}^{2}. {5}^{2}. {2}^{4} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2 + 4} . {3}^{2} . {5}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{6}.9.25 } \\ \\ = \frac{ {2}^{14 - 2} }{225} \\ \\ = \frac{ {2}^{12} }{225} \\ \\ = \frac{4096}{225} \\ \\ =18,2[/tex][tex] \\ [/tex]Nomor 3c[tex] \frac{ {6}^{3}. {8}^{4}. {9}^{2} }{ {3}^{5}. {4}^{4}. {2}^{2} } \\ \\ = \frac{ {(2 \times 3)}^{3}. { ({2}^{3} )}^{4}. { ({3}^{2} )}^{2} }{ {3}^{5} . {( {2}^{2}) }^{4}. {2}^{2} } \\ \\ = \frac{ {2}^{3}. {3}^{3}. {2}^{12}. {3}^{4} }{ {3}^{5}. {2}^{8}. {2}^{2} } \\ \\ = {2}^{(3 + 12 )- (8 + 2)} \times {3}^{(3 + 4) - 5} \\ \\ = {2}^{15 - 10} \times {3}^{7 - 5} \\ \\ = {2}^{5} \times {3}^{2} \\ \\ = 32 \times 9 \\ \\ = 288[/tex]Nomor 3a[tex] \frac{ {2}^{2}. {2}^{3} . {2}^{4}. {2}^{5}}{ {2}^{7}. {2}^{6}} \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{ {2}^{7 + 6} } \\ \\ = \frac{ {2}^{14} }{ {2}^{13} } \\ \\ = {2}^{14 - 13} \\ \\ = {2}^{1} \\ \\ = 2[/tex][tex] \\ [/tex]Nomor 3b[tex] \frac{ {2}^{2} . {2}^{3} . {2}^{4}. {2}^{5} }{ {6}^{2} . {20}^{2} } \\ \\ = \frac{ {2}^{2 + 3 + 4 + 5} }{(2 \times 3) {}^{2}. {(5 \times {2}^{2} )}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2}. {3}^{2}. {5}^{2}. {2}^{4} } \\ \\ = \frac{ {2}^{14} }{ {2}^{2 + 4} . {3}^{2} . {5}^{2} } \\ \\ = \frac{ {2}^{14} }{ {2}^{6}.9.25 } \\ \\ = \frac{ {2}^{14 - 2} }{225} \\ \\ = \frac{ {2}^{12} }{225} \\ \\ = \frac{4096}{225} \\ \\ =18,2[/tex][tex] \\ [/tex]Nomor 3c[tex] \frac{ {6}^{3}. {8}^{4}. {9}^{2} }{ {3}^{5}. {4}^{4}. {2}^{2} } \\ \\ = \frac{ {(2 \times 3)}^{3}. { ({2}^{3} )}^{4}. { ({3}^{2} )}^{2} }{ {3}^{5} . {( {2}^{2}) }^{4}. {2}^{2} } \\ \\ = \frac{ {2}^{3}. {3}^{3}. {2}^{12}. {3}^{4} }{ {3}^{5}. {2}^{8}. {2}^{2} } \\ \\ = {2}^{(3 + 12 )- (8 + 2)} \times {3}^{(3 + 4) - 5} \\ \\ = {2}^{15 - 10} \times {3}^{7 - 5} \\ \\ = {2}^{5} \times {3}^{2} \\ \\ = 32 \times 9 \\ \\ = 288[/tex]

Semoga dengan pertanyaan yang sudah terjawab oleh Ryzzx dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Thu, 03 Nov 22