The coordinates of three points are A(1, 1), B(-1, 4)

Berikut ini adalah pertanyaan dari MoonJiu pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

The coordinates of three points are A(1, 1), B(-1, 4) and C(h, k). Given that the gradients of AB, AC and BC are -3a, 3a and a respectively, find the values of h, k and a.​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

h = 5, k = 7, a = ½

Explanation/Penjelasan

The coordinates of three points are A(1, 1), B(–1, 4) and C(h, k).

Given that the gradients of AB, AC and BC are –3a, 3a and a respectively, we can get

\begin{aligned}&&m_{\rm AB}&=\frac{y_{\rm B}-y_{\rm A}}{x_{\rm B}-x_{\rm A}}\\\\&\Leftrightarrow&-3a&=\frac{4-1}{-1-1}\\&&&=\frac{3}{-2}\ =\ -3\cdot\frac{1}{2}\\\\&\therefore&a&=\bf\frac{1}{2}\\\\&\therefore&m_{\rm AC}&=3a={\frac{3}{2}}=\frac{y_{\rm C}-y_{\rm A}}{x_{\rm C}-x_{\rm A}}\\&\Leftrightarrow&\frac{3}{2}&=\frac{k-1}{h-1}\\&\Leftrightarrow&\!\!3h-3&=2k-2\quad...(i)\end{aligned}

\begin{aligned}&&m_{\rm BC}&=a={\frac{1}{2}}=\frac{y_{\rm C}-y_{\rm B}}{x_{\rm C}-x_{\rm B}}\\&\Leftrightarrow&\frac{1}{2}&=\frac{k-4}{h-(-1)}\ =\ \frac{k-4}{h+1}\\&\Leftrightarrow&h+1&=2k-8\\&\Leftrightarrow&h&=2k-9\quad...(ii)\end{aligned}

\begin{aligned}&&(ii)\to(i):\\&&\!\!\!\!3(2k-9)-3&=2k-2\\&\Leftrightarrow&6k-27-3&=2k-2\\&\Leftrightarrow&6k-30&=2k-2\\&\Leftrightarrow&6k-2k&=-2+30\\&\Leftrightarrow&4k&=28\\&&\therefore\ k&=\bf7\\\\&&(ii)\implies h&=2(7)-9\\&&&=14-9\\&&\therefore\ h&=\bf5\end{aligned}

CONCLUSION/KESIMPULAN

∴  h = 5, k = 7, a = ½

h = 5, k = 7, a = ½ Explanation/PenjelasanThe coordinates of three points are A(1, 1), B(–1, 4) and C(h, k).Given that the gradients of AB, AC and BC are –3a, 3a and a respectively, we can get[tex]\begin{aligned}&&m_{\rm AB}&=\frac{y_{\rm B}-y_{\rm A}}{x_{\rm B}-x_{\rm A}}\\\\&\Leftrightarrow&-3a&=\frac{4-1}{-1-1}\\&&&=\frac{3}{-2}\ =\ -3\cdot\frac{1}{2}\\\\&\therefore&a&=\bf\frac{1}{2}\\\\&\therefore&m_{\rm AC}&=3a={\frac{3}{2}}=\frac{y_{\rm C}-y_{\rm A}}{x_{\rm C}-x_{\rm A}}\\&\Leftrightarrow&\frac{3}{2}&=\frac{k-1}{h-1}\\&\Leftrightarrow&\!\!3h-3&=2k-2\quad...(i)\end{aligned}[/tex][tex]\begin{aligned}&&m_{\rm BC}&=a={\frac{1}{2}}=\frac{y_{\rm C}-y_{\rm B}}{x_{\rm C}-x_{\rm B}}\\&\Leftrightarrow&\frac{1}{2}&=\frac{k-4}{h-(-1)}\ =\ \frac{k-4}{h+1}\\&\Leftrightarrow&h+1&=2k-8\\&\Leftrightarrow&h&=2k-9\quad...(ii)\end{aligned}[/tex][tex]\begin{aligned}&&(ii)\to(i):\\&&\!\!\!\!3(2k-9)-3&=2k-2\\&\Leftrightarrow&6k-27-3&=2k-2\\&\Leftrightarrow&6k-30&=2k-2\\&\Leftrightarrow&6k-2k&=-2+30\\&\Leftrightarrow&4k&=28\\&&\therefore\ k&=\bf7\\\\&&(ii)\implies h&=2(7)-9\\&&&=14-9\\&&\therefore\ h&=\bf5\end{aligned}[/tex] CONCLUSION/KESIMPULAN∴  h = 5, k = 7, a = ½  

Semoga dengan pertanyaan yang sudah terjawab oleh henriyulianto dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Thu, 30 Jun 22