Mohon bantuannya dengan caranya yaaaa

Berikut ini adalah pertanyaan dari farel1234567 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Mohon bantuannya dengan caranya yaaaa
Mohon bantuannya dengan caranya yaaaa

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

\huge{\green{\mathfrak{1.}}}

Diketahui : \tan~\theta=-\frac{8}{15}dengan\sin~\theta > 0

Perhatikan gambar :

Pada gambar tersebut :

\tan~\theta=\frac{\text{BC}}{\text{AB}}

\to \frac{\text{BC}}{\text{AB}}=\frac{8}{15}

\to BC = 8 dan AB = 15

Dengan teorema Pythagoras :

AC = \sf \sqrt{15^2+8^2}=\sqrt{225+64}=\sqrt{289} = 17

Pada gambar tersebut :

\sin~\theta=\frac{\text{BC}}{\text{AC}}=\frac{8}{17}

Karena \sin~\theta > 0, dan diketahui \tan~\theta=-\frac{8}{15} < 0, maka : \cos~\theta=-\frac{15}{17}

\huge{\purple{\mathfrak{a.}}}

Sehingga :

\red{\sin~\theta\times \cos~\theta+\cos~\theta\times \sin~\theta}

=\left(\frac{8}{17}\right)\left(-\frac{15}{17}\right)+\left(-\frac{15}{17}\right)\left(\frac{8}{17}\right)

=-\frac{120}{289}-\frac{120}{289}~\red{\huge{=-\frac{240}{289}}}

\huge{\purple{\mathfrak{b.}}}

\cosec~\theta=\frac{1}{\sin~\theta}=\frac{1}{\frac{8}{17}}=\frac{17}{8}

\frac{\cosec~\theta}{\cot~\theta}=\frac{\frac{1}{\sin~\theta}}{\frac{\cos~\theta}{\sin~\theta}}=\frac{1}{\sin~\theta}\times \frac{\sin~\theta}{\cos~\theta}

\red{\frac{\cosec~\theta}{\cot~\theta}}=\frac{1}{\cos~\theta}=\frac{1}{-\frac{15}{17}}~\red{\huge{=-\frac{17}{15}}}

\\

\huge{\green{\mathfrak{2.}}}

\sin~(-300\degree)=\sin~-(360\degree-60\degree)=\sin~(60\degree-360\degree)

\boxed{\sin~(\alpha-\beta)=(\sin~\alpha\times \cos~\beta)-(\cos~\alpha\times \sin~\beta)}

Sehingga :

\sin~(-300\degree)=(\sin~60\degree\times \cos~360\degree)-(\cos~60\degree\times \sin~360\degree

\cos~(-300\degree)=\left(\frac{1}{2}\sqrt{3}\right)(1)+\left(\frac{1}{2}\right)(0)

\red{\huge{\sin~(-300\degree)=\frac{1}{2}\sqrt{3}}}

\\

\huge{\green{\mathfrak{3.}}}

\cos~(1.470\degree)=\cos~(4\times 360\degree+30\degree

\cos~(1.470\degree)=\cos~(360\degree+30\degree)

\boxed{\cos~(\alpha+\beta)=(\cos~\alpha\times \cos~\beta)-(\sin~\alpha\times \sin~\beta)}

Sehingga :

\cos~(1.470\degree)=(\cos~360\degree\times \cos~30\degree)-(\sin~360\degree\times \sin~30\degree)

\cos~(1.470\degree)=(1)\left(\frac{1}{2}\sqrt{3}\right)-(0)\left(\frac{1}{2}\right)

\red{\huge{\cos~(1.470\degree)=\frac{1}{2}\sqrt{3}}}

\\

\huge{\green{\mathfrak{4.}}}

\frac{\sin~x}{1~+~\cos~x}+\frac{\sin~x}{1~-~\cos~x}

=\frac{\sin~x(1~-~\cos~x)+\sin~x(1~+~\cos~x)}{(1~+~\cos~x)(1~-~\cos~x)}

=\frac{\sin~x-\sin~x~\cos~x+\sin~x+\sin~x~\cos~x}{1-\cos^2~x}

\boxed{\cos^2~x+\sin^2~x=1}

=\frac{2~\sin~x}{\sin^2~x}

\red{\huge{\frac{\sin~x}{1+\cos~x}+\frac{\sin~x}{1-\cos~x}=\frac{2}{\sin~x}}}

[tex]\huge{\green{\mathfrak{1.}}}[/tex]Diketahui : [tex]\tan~\theta=-\frac{8}{15}[/tex] dengan [tex]\sin~\theta > 0[/tex]Perhatikan gambar :Pada gambar tersebut :[tex]\tan~\theta=\frac{\text{BC}}{\text{AB}}[/tex][tex]\to \frac{\text{BC}}{\text{AB}}=\frac{8}{15}[/tex][tex]\to[/tex] BC = 8 dan AB = 15Dengan teorema Pythagoras :AC = [tex]\sf \sqrt{15^2+8^2}=\sqrt{225+64}=\sqrt{289}[/tex] = 17Pada gambar tersebut :[tex]\sin~\theta=\frac{\text{BC}}{\text{AC}}=\frac{8}{17}[/tex]Karena [tex]\sin~\theta > 0[/tex], dan diketahui [tex]\tan~\theta=-\frac{8}{15} < 0[/tex], maka : [tex]\cos~\theta=-\frac{15}{17}[/tex][tex]\huge{\purple{\mathfrak{a.}}}[/tex]Sehingga :[tex]\red{\sin~\theta\times \cos~\theta+\cos~\theta\times \sin~\theta}[/tex][tex]=\left(\frac{8}{17}\right)\left(-\frac{15}{17}\right)+\left(-\frac{15}{17}\right)\left(\frac{8}{17}\right)[/tex][tex]=-\frac{120}{289}-\frac{120}{289}~\red{\huge{=-\frac{240}{289}}}[/tex][tex]\huge{\purple{\mathfrak{b.}}}[/tex][tex]\cosec~\theta=\frac{1}{\sin~\theta}=\frac{1}{\frac{8}{17}}=\frac{17}{8}[/tex][tex]\frac{\cosec~\theta}{\cot~\theta}=\frac{\frac{1}{\sin~\theta}}{\frac{\cos~\theta}{\sin~\theta}}[/tex][tex]=\frac{1}{\sin~\theta}\times \frac{\sin~\theta}{\cos~\theta}[/tex][tex]\red{\frac{\cosec~\theta}{\cot~\theta}}=\frac{1}{\cos~\theta}=\frac{1}{-\frac{15}{17}}~[/tex][tex]\red{\huge{=-\frac{17}{15}}}[/tex][tex]\\[/tex][tex]\huge{\green{\mathfrak{2.}}}[/tex][tex]\sin~(-300\degree)=\sin~-(360\degree-60\degree)[/tex][tex]=\sin~(60\degree-360\degree)[/tex][tex]\boxed{\sin~(\alpha-\beta)=(\sin~\alpha\times \cos~\beta)-(\cos~\alpha\times \sin~\beta)}[/tex]Sehingga :[tex]\sin~(-300\degree)=(\sin~60\degree\times \cos~360\degree)-(\cos~60\degree\times \sin~360\degree[/tex][tex]\cos~(-300\degree)=\left(\frac{1}{2}\sqrt{3}\right)(1)+\left(\frac{1}{2}\right)(0)[/tex][tex]\red{\huge{\sin~(-300\degree)=\frac{1}{2}\sqrt{3}}}[/tex][tex]\\[/tex][tex]\huge{\green{\mathfrak{3.}}}[/tex][tex]\cos~(1.470\degree)=\cos~(4\times 360\degree+30\degree[/tex][tex]\cos~(1.470\degree)=\cos~(360\degree+30\degree)[/tex][tex]\boxed{\cos~(\alpha+\beta)=(\cos~\alpha\times \cos~\beta)-(\sin~\alpha\times \sin~\beta)}[/tex]Sehingga :[tex]\cos~(1.470\degree)=(\cos~360\degree\times \cos~30\degree)-(\sin~360\degree\times \sin~30\degree)[/tex][tex]\cos~(1.470\degree)=(1)\left(\frac{1}{2}\sqrt{3}\right)-(0)\left(\frac{1}{2}\right)[/tex][tex]\red{\huge{\cos~(1.470\degree)=\frac{1}{2}\sqrt{3}}}[/tex][tex]\\[/tex][tex]\huge{\green{\mathfrak{4.}}}[/tex][tex]\frac{\sin~x}{1~+~\cos~x}+\frac{\sin~x}{1~-~\cos~x}[/tex][tex]=\frac{\sin~x(1~-~\cos~x)+\sin~x(1~+~\cos~x)}{(1~+~\cos~x)(1~-~\cos~x)}[/tex][tex]=\frac{\sin~x-\sin~x~\cos~x+\sin~x+\sin~x~\cos~x}{1-\cos^2~x}[/tex][tex]\boxed{\cos^2~x+\sin^2~x=1}[/tex][tex]=\frac{2~\sin~x}{\sin^2~x}[/tex][tex]\red{\huge{\frac{\sin~x}{1+\cos~x}+\frac{\sin~x}{1-\cos~x}=\frac{2}{\sin~x}}}[/tex]

Semoga dengan pertanyaan yang sudah terjawab oleh WillyJember dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Fri, 09 Jul 21