Diketahui p = 3i + 2j + k , q

Berikut ini adalah pertanyaan dari vivifnt pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Diketahui p = 3i + 2j + k , q = 2i – j + 2k , r = 3i + j – k, dan s = – 2i + 3j + 3k ,tentukan hasil perkalian vektor-vektor berikut: (Cross Product dan Dot Product)
a. q × (2p – r)
b. p . (q x r)
c. (p x 2q) . (r x s)
d. (p - s) × (q + r)
e. p x 2q x s
f. (p x 2q x r) . s

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jika diketahui : \vec{p}=a\vec{i}+b\vec{j}+c\vec{k}dan\vec{q}=x\vec{i}+y\vec{j}+z\vec{k}, maka :

Dot Product :

\purple{\huge{\vec{p}.\vec{q}=ax+by+cz}}

Cross Product :

\boxed{\purple{\begin{array}{ccc}\vec{p}\times \vec{q}=(bz-cy)\vec{i}\\+(cx-az)\vec{j}+(ay-bx)\vec{k}\end{array}}}

Cara menghitung cross product dua buah vektor sama dengan cara menghitung determinan matriks 3 × 3 seperti terlampir di gambar.

PERLU DIPERHATIKAN : \vec{p}.\vec{q}=\vec{q}.\vec{p}, tetapi \vec{p}\times \vec{q}\ne \vec{q}\times \vec{p}

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

\green{\huge{a.}}

\overrightarrow{2p}-\vec{r}=3\vec{i}+3\vec{j}+3\vec{k}[tex]\vec{q}\times \left(\overrightarrow{2p}-\vec{r}\right)=(-3-6)\vec{i}+(6-6)\vec{j}+(6-(-3))\vec{k}

\red{\huge{\begin{array}{ccc}\vec{q}\times \left(\overrightarrow{2p}-\vec{r}\right)=\\-9\vec{i}+9\vec{k}\end{array}}}

\\

\green{\huge{b.}}

\vec{q}\times \vec{r}=(1-2)\vec{i}+(6-(-2))\vec{j}+(2-(-3))\vec{k}=-\vec{i}+8\vec{j}+5\vec{k}

\vec{p}.\left(\vec{q}\times \vec{r}\right)=(3\times -1)+(2\times 8)+(1\times 5)=-3+16+5

\red{\huge{\vec{p}.\left(\vec{q}\times \vec{r}\right)=18}}

\\

\green{\huge{c.}}

\vec{p}\times \overrightarrow{2q}=(8-(-2))\vec{i}+(4-12)\vec{j}+(-6-8)\vec{k}=10\vec{i}-8\vec{j}-14\vec{k}

\vec{r}\times \vec{s}=(3-(-3))\vec{i}+(2-9)\vec{j}+(9-(-2))\vec{k}=6\vec{i}-7\vec{j}+11\vec{k}

\left(\vec{p}\times \overrightarrow{2q}\right).\left(\vec{r}\times \vec{s}\right)=(10\times 6)+(-8\times -7)+(-14\times 11)=60+56-154

\red{\huge{\begin{array}{ccc}\left(\vec{p}\times \overrightarrow{2q}\right).\left(\vec{r}\times \vec{s}\right)\\=-38\end{array}}}

\\

\green{\huge{d.}}

\vec{p}-\vec{s}=5\vec{i}-\vec{j}-2\vec{k}

\vec{q}+\vec{r}=5\vec{i}+\vec{k}

\left(\vec{p}-\vec{s}\right)\times \left(\vec{q}+\vec{r}\right)=(-1-0)\vec{i}+(-10-5)\vec{j}+(0-(-5))\vec{k}

\red{\huge{\begin{array}{ccc}\left(\vec{p}-\vec{s}\right)\times \left(\vec{q}+\vec{r}\right)\\=-\vec{i}-15\vec{j}+5\vec{k}\end{array}}}

\\

\green{\huge{e.}}

\vec{p}\times \overrightarrow{2q}=(8-(-2))\vec{i}+(4-12)\vec{j}+(-6-8)\vec{k}=10\vec{i}-8\vec{j}-14\vec{k}

\left(\vec{p}\times \overrightarrow{2q}\right)\times \vec{s}=(-24-(-42))\vec{i}+(28-30)\vec{j}+(30-16)\vec{k}

\red{\huge{\begin{array}{ccc}\vec{p}\times \overrightarrow{2q}\times \vec{s}\\=18\vec{i}-2\vec{j}+14\vec{k}\end{array}}}

\\

\green{\huge{f.}}

\vec{p}\times \overrightarrow{2q}\times \vec{r}=(8-(-14))\vec{i}+(-42-(-10))\vec{j}+(10-(-24))\vec{k}=22\vec{i}-32\vec{j}+34\vec{k}

\left(\vec{p}\times \overrightarrow{2q}\times \vec{r}\right).\vec{s}=(22\times -2)+(-32\times 3)+(34\times 3)=-44-96+102

\red{\huge{\begin{array}{ccc}\left(\vec{p}\times \overrightarrow{2q}\times \vec{r}\right).\vec{s}\\=-38\end{array}}}

Jika diketahui : [tex]\vec{p}=a\vec{i}+b\vec{j}+c\vec{k}[/tex] dan [tex]\vec{q}=x\vec{i}+y\vec{j}+z\vec{k}[/tex], maka :Dot Product :[tex]\purple{\huge{\vec{p}.\vec{q}=ax+by+cz}}[/tex]Cross Product :[tex]\boxed{\purple{\begin{array}{ccc}\vec{p}\times \vec{q}=(bz-cy)\vec{i}\\+(cx-az)\vec{j}+(ay-bx)\vec{k}\end{array}}}[/tex]Cara menghitung cross product dua buah vektor sama dengan cara menghitung determinan matriks 3 × 3 seperti terlampir di gambar.PERLU DIPERHATIKAN : [tex]\vec{p}.\vec{q}=\vec{q}.\vec{p}[/tex], tetapi [tex]\vec{p}\times \vec{q}\ne \vec{q}\times \vec{p}[/tex]•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••[tex]\green{\huge{a.}}[/tex][tex]\overrightarrow{2p}-\vec{r}=3\vec{i}+3\vec{j}+3\vec{k}[tex]\vec{q}\times \left(\overrightarrow{2p}-\vec{r}\right)=(-3-6)\vec{i}+(6-6)\vec{j}+(6-(-3))\vec{k}[/tex][tex]\red{\huge{\begin{array}{ccc}\vec{q}\times \left(\overrightarrow{2p}-\vec{r}\right)=\\-9\vec{i}+9\vec{k}\end{array}}}[/tex][tex]\\[/tex][tex]\green{\huge{b.}}[/tex][tex]\vec{q}\times \vec{r}=(1-2)\vec{i}+(6-(-2))\vec{j}+(2-(-3))\vec{k}[/tex][tex]=-\vec{i}+8\vec{j}+5\vec{k}[/tex][tex]\vec{p}.\left(\vec{q}\times \vec{r}\right)=(3\times -1)+(2\times 8)+(1\times 5)[/tex][tex]=-3+16+5[/tex][tex]\red{\huge{\vec{p}.\left(\vec{q}\times \vec{r}\right)=18}}[/tex][tex]\\[/tex][tex]\green{\huge{c.}}[/tex][tex]\vec{p}\times \overrightarrow{2q}=(8-(-2))\vec{i}+(4-12)\vec{j}+(-6-8)\vec{k}[/tex][tex]=10\vec{i}-8\vec{j}-14\vec{k}[/tex][tex]\vec{r}\times \vec{s}=(3-(-3))\vec{i}+(2-9)\vec{j}+(9-(-2))\vec{k}[/tex][tex]=6\vec{i}-7\vec{j}+11\vec{k}[/tex][tex]\left(\vec{p}\times \overrightarrow{2q}\right).\left(\vec{r}\times \vec{s}\right)=(10\times 6)+(-8\times -7)+(-14\times 11)[/tex][tex]=60+56-154[/tex][tex]\red{\huge{\begin{array}{ccc}\left(\vec{p}\times \overrightarrow{2q}\right).\left(\vec{r}\times \vec{s}\right)\\=-38\end{array}}}[/tex][tex]\\[/tex][tex]\green{\huge{d.}}[/tex][tex]\vec{p}-\vec{s}=5\vec{i}-\vec{j}-2\vec{k}[/tex][tex]\vec{q}+\vec{r}=5\vec{i}+\vec{k}[/tex][tex]\left(\vec{p}-\vec{s}\right)\times \left(\vec{q}+\vec{r}\right)=(-1-0)\vec{i}+(-10-5)\vec{j}+(0-(-5))\vec{k}[/tex][tex]\red{\huge{\begin{array}{ccc}\left(\vec{p}-\vec{s}\right)\times \left(\vec{q}+\vec{r}\right)\\=-\vec{i}-15\vec{j}+5\vec{k}\end{array}}}[/tex][tex]\\[/tex][tex]\green{\huge{e.}}[/tex][tex]\vec{p}\times \overrightarrow{2q}=(8-(-2))\vec{i}+(4-12)\vec{j}+(-6-8)\vec{k}[/tex][tex]=10\vec{i}-8\vec{j}-14\vec{k}[/tex][tex]\left(\vec{p}\times \overrightarrow{2q}\right)\times \vec{s}=(-24-(-42))\vec{i}+(28-30)\vec{j}+(30-16)\vec{k}[/tex][tex]\red{\huge{\begin{array}{ccc}\vec{p}\times \overrightarrow{2q}\times \vec{s}\\=18\vec{i}-2\vec{j}+14\vec{k}\end{array}}}[/tex][tex]\\[/tex][tex]\green{\huge{f.}}[/tex][tex]\vec{p}\times \overrightarrow{2q}\times \vec{r}=(8-(-14))\vec{i}+(-42-(-10))\vec{j}+(10-(-24))\vec{k}[/tex][tex]=22\vec{i}-32\vec{j}+34\vec{k}[/tex][tex]\left(\vec{p}\times \overrightarrow{2q}\times \vec{r}\right).\vec{s}=(22\times -2)+(-32\times 3)+(34\times 3)[/tex][tex]=-44-96+102[/tex][tex]\red{\huge{\begin{array}{ccc}\left(\vec{p}\times \overrightarrow{2q}\times \vec{r}\right).\vec{s}\\=-38\end{array}}}[/tex]

Semoga dengan pertanyaan yang sudah terjawab oleh WillyJember dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Sun, 11 Jul 21