Diketahui f(x) = x² dan g(x) = 4x -1. Jika

Berikut ini adalah pertanyaan dari yarainyday pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Diketahui f(x) = x² dan g(x) = 4x -1. Jika h(x) = f(g(x) + 2) maka h^-1(x) adalah...haloo mohon bantuannya ya terima kasih banyak ​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Invers~

Diketahui f(x) = x² dan g(x) = 4x -1. Jika h(x) = f(g(x) + 2) maka h^-1(x) adalah
\boxed{\mathbf{h^{-1}\left(x\right)=\frac{\sqrt{x}-1}{4}}}

 \:

Fungsi Komposisi dan Fungsi Invers

Pendahuluan

A.  Definisi Fungsi

Fungsi dari himpunan A ke Himpunan B => relasi yang memetakan setiap anggota A dengan tetap satu anggota B.

 \:

 \boxed{\boxed{\mathbf{B.\ \ Operasi\ Aljabar}}}

 \scriptsize\boxed{\begin{array}{c}\mathbf{1.\ Penjumlahan\ dan\ Pengurangan\ Fungsi}\\\mathbf{\left(f\pm g\right)\left(x\right)=f\left(x\right)\pm g\left(x\right)}\\\\\mathbf{2.\ Perkalian\ Fungsi}\\\mathbf{\left(f\ .\ g\right)\left(x\right)=f\left(x\right)g\left(x\right)}\\\\\mathbf{3.\ Pembagian\ Fungsi}\\\mathbf{\left(\frac{f}{g}\right)\left(x\right)=\frac{f\left(x\right)}{g\left(x\right)}}\\\\\mathbf{4.\ Perpangkatan}\\\mathbf{\left(f\left(x\right)\right)^{n}=f^{n}\left(x\right)}\end{array}}

 \:

 \boxed{\boxed{\mathbf{C.\ \ Fungsi\ Komposisi}}}

 \scriptsize\mathbf{1.\ Fungsi\ komposisi\ dapat\ ditulis\ sebagai\ :}\\\\\mathbf{\left(f \circ g\right)\left(x\right)=f\left(g\left(x\right)\right)\to komposisi\ g}\\\mathbf{\left(g \circ f\right)\left(x\right)=g\left(f\left(x\right)\right)\to komposisi\ f}

 \boxed{\underbrace{\mathbf{x\to_{g}\ g\left(x\right)\to_{f}\ f\left(g\left(x\right)\right)}}_{\mathbf{\left(f\circ g\right)\left(x\right)=f\left(g\left(x\right)\right)}}}

 \:

 \scriptsize\mathbf{2.\ Sifat\ fungsi\ komposisi,\ antara\ lain\ :}\\\\\mathbf{a.\ Tidak\ komutatif,\ \left(f \circ g\right)\left(x\right)\ne\left(g \circ f\right)\left(x\right).}\\\mathbf{b.\ Asosiatif,\ \left(f \circ \left(g \circ h\right)\right)\left(x\right)=\left(\left(f \circ g\right) \circ h\right)\left(x\right).}\\\mathbf{c.\ Terdapat\ unsur\ identitas\ \left(I\right)\ \left(x\right),\ }\\\mathbf{\left(f \circ I\right)\left(x\right)=\left(I \circ f\right)\left(x\right)=f\left(x\right).}

 \:

\boxed{\boxed{\mathbf{D. \ \ Fungsi \ Invers}}}

\small\mathbf{1.) \ f^{-1} (x) \to invers\ dari\ fungsi\ f\left(x\right).}

\boxed{\mathbf{\boxed{\mathbf{f^{-1}\left(y\right)=x}}\ _{f^{-1}} \rightleftharpoons ^{f} \ \boxed{\mathbf{y=f\left(x\right)}}}}

 \:

\scriptsize\mathbf{2.) \ Invers\ dapat\ ditentukan\ dengan\ mengubah\ bentuk}

\scriptsize\mathbf{f\left(x\right)=y=...} \ \scriptsize\mathbf{menjadi} \ \scriptsize\mathbf{f^{-1}\left(y\right)=x=...}

 \:

\mathbf{3.)\ Sifat\ fungsi \ invers \ :}

\mathbf{a.\ \left(f \circ f^{-1}\right)\left(x\right)=\left(f^{-1} \circ f\right)\left(x\right)=I\left(x\right)}

\mathbf{b.\ \left(f \circ g\right)^{-1}\left(x\right)=\left(g^{-1} \circ f^{-1}\right)\left(x\right)}

\mathbf{c.\ \left(f \circ g\right)\left(x\right)=h\left(x\right)\to f\left(x\right)=\left(h \circ g^{-1}\right)\left(x\right)}

 \:

\mathbf{4.\ Rumus \ Cepat :}

\small\boxed{\mathbf{f\left(x\right)=\frac{ax+b}{cx+d}\to f^{-1}\left(x\right)=\frac{-dx+b}{cx-a}}}

 \:

 \:

Pembahasan

Diketahui :

f(x) = x² dan g(x) = 4x -1.

Ditanya :

Jika h(x) = f(g(x) + 2) maka h^-1(x) adalah...

Jawaban :

\mathbf{f(x)=x^{2}}
\mathbf{g(x)=4x-1}

\mathbf{h(x)=f(g(x)+2)}
\mathbf{h\left(x\right)=f\left(4x-1+2\right)}
\mathbf{h\left(x\right)=f\left(4x+1\right)}
\mathbf{h\left(x\right)=\left(4x+1\right)^{2}}

\mathbf{h^{-1}\left(x\right)=?}

\mathbf{y=\left(4x+1\right)^{2}}
\mathbf{\sqrt{y}=4x+1}
\mathbf{\frac{\sqrt{y}-1}{4}=x}
\mathbf{x=\frac{\sqrt{y}-1}{4}}

\boxed{\mathbf{h^{-1}\left(x\right)=\frac{\sqrt{x}-1}{4}}}

 \:

 \:

Pelajari Lebih Lanjut :

 \:

 \:

Detail Jawaban

Kelas : 11 SMA

Bab : 2

Sub Bab : Bab 6 - Fungsi

Kode Kategorisasi : 11.2.6

Kata Kunci : Fungsi Komposisi dan Fungsi invers.

Invers~Diketahui f(x) = x² dan g(x) = 4x -1. Jika h(x) = f(g(x) + 2) maka h^-1(x) adalah[tex]\boxed{\mathbf{h^{-1}\left(x\right)=\frac{\sqrt{x}-1}{4}}}[/tex][tex] \: [/tex]Fungsi Komposisi dan Fungsi InversPendahuluan A.  Definisi FungsiFungsi dari himpunan A ke Himpunan B => relasi yang memetakan setiap anggota A dengan tetap satu anggota B.[tex] \: [/tex][tex] \boxed{\boxed{\mathbf{B.\ \ Operasi\ Aljabar}}}[/tex][tex] \scriptsize\boxed{\begin{array}{c}\mathbf{1.\ Penjumlahan\ dan\ Pengurangan\ Fungsi}\\\mathbf{\left(f\pm g\right)\left(x\right)=f\left(x\right)\pm g\left(x\right)}\\\\\mathbf{2.\ Perkalian\ Fungsi}\\\mathbf{\left(f\ .\ g\right)\left(x\right)=f\left(x\right)g\left(x\right)}\\\\\mathbf{3.\ Pembagian\ Fungsi}\\\mathbf{\left(\frac{f}{g}\right)\left(x\right)=\frac{f\left(x\right)}{g\left(x\right)}}\\\\\mathbf{4.\ Perpangkatan}\\\mathbf{\left(f\left(x\right)\right)^{n}=f^{n}\left(x\right)}\end{array}}[/tex][tex] \: [/tex][tex] \boxed{\boxed{\mathbf{C.\ \ Fungsi\ Komposisi}}}[/tex][tex] \scriptsize\mathbf{1.\ Fungsi\ komposisi\ dapat\ ditulis\ sebagai\ :}\\\\\mathbf{\left(f \circ g\right)\left(x\right)=f\left(g\left(x\right)\right)\to komposisi\ g}\\\mathbf{\left(g \circ f\right)\left(x\right)=g\left(f\left(x\right)\right)\to komposisi\ f}[/tex][tex] \boxed{\underbrace{\mathbf{x\to_{g}\ g\left(x\right)\to_{f}\ f\left(g\left(x\right)\right)}}_{\mathbf{\left(f\circ g\right)\left(x\right)=f\left(g\left(x\right)\right)}}} [/tex][tex] \: [/tex][tex] \scriptsize\mathbf{2.\ Sifat\ fungsi\ komposisi,\ antara\ lain\ :}\\\\\mathbf{a.\ Tidak\ komutatif,\ \left(f \circ g\right)\left(x\right)\ne\left(g \circ f\right)\left(x\right).}\\\mathbf{b.\ Asosiatif,\ \left(f \circ \left(g \circ h\right)\right)\left(x\right)=\left(\left(f \circ g\right) \circ h\right)\left(x\right).}\\\mathbf{c.\ Terdapat\ unsur\ identitas\ \left(I\right)\ \left(x\right),\ }\\\mathbf{\left(f \circ I\right)\left(x\right)=\left(I \circ f\right)\left(x\right)=f\left(x\right).} [/tex][tex] \: [/tex][tex]\boxed{\boxed{\mathbf{D. \ \ Fungsi \ Invers}}}[/tex][tex]\small\mathbf{1.) \ f^{-1} (x) \to invers\ dari\ fungsi\ f\left(x\right).}[/tex][tex]\boxed{\mathbf{\boxed{\mathbf{f^{-1}\left(y\right)=x}}\ _{f^{-1}} \rightleftharpoons ^{f} \ \boxed{\mathbf{y=f\left(x\right)}}}}[/tex][tex] \: [/tex][tex]\scriptsize\mathbf{2.) \ Invers\ dapat\ ditentukan\ dengan\ mengubah\ bentuk}[/tex][tex]\scriptsize\mathbf{f\left(x\right)=y=...} \ \scriptsize\mathbf{menjadi} \ \scriptsize\mathbf{f^{-1}\left(y\right)=x=...}[/tex][tex] \: [/tex][tex]\mathbf{3.)\ Sifat\ fungsi \ invers \ :}[/tex][tex]\mathbf{a.\ \left(f \circ f^{-1}\right)\left(x\right)=\left(f^{-1} \circ f\right)\left(x\right)=I\left(x\right)}[/tex][tex]\mathbf{b.\ \left(f \circ g\right)^{-1}\left(x\right)=\left(g^{-1} \circ f^{-1}\right)\left(x\right)}[/tex][tex]\mathbf{c.\ \left(f \circ g\right)\left(x\right)=h\left(x\right)\to f\left(x\right)=\left(h \circ g^{-1}\right)\left(x\right)}[/tex][tex] \: [/tex][tex]\mathbf{4.\ Rumus \ Cepat :}[/tex][tex]\small\boxed{\mathbf{f\left(x\right)=\frac{ax+b}{cx+d}\to f^{-1}\left(x\right)=\frac{-dx+b}{cx-a}}}[/tex][tex] \: [/tex][tex] \: [/tex]PembahasanDiketahui :f(x) = x² dan g(x) = 4x -1.Ditanya :Jika h(x) = f(g(x) + 2) maka h^-1(x) adalah...Jawaban :[tex]\mathbf{f(x)=x^{2}}[/tex][tex]\mathbf{g(x)=4x-1}[/tex][tex]\mathbf{h(x)=f(g(x)+2)}[/tex][tex]\mathbf{h\left(x\right)=f\left(4x-1+2\right)}[/tex][tex]\mathbf{h\left(x\right)=f\left(4x+1\right)}[/tex][tex]\mathbf{h\left(x\right)=\left(4x+1\right)^{2}}[/tex][tex]\mathbf{h^{-1}\left(x\right)=?}[/tex][tex]\mathbf{y=\left(4x+1\right)^{2}}[/tex][tex]\mathbf{\sqrt{y}=4x+1}[/tex][tex]\mathbf{\frac{\sqrt{y}-1}{4}=x}[/tex][tex]\mathbf{x=\frac{\sqrt{y}-1}{4}}[/tex][tex]\boxed{\mathbf{h^{-1}\left(x\right)=\frac{\sqrt{x}-1}{4}}}[/tex][tex] \: [/tex][tex] \: [/tex]Pelajari Lebih Lanjut :Contoh soal mencari fungsi komposisi -> (g o f) (x) : https://brainly.co.id/tugas/49941623Contoh soal fungsi komposisi -> (f o g) (x) : https://brainly.co.id/tugas/49193757Contoh soal Diketahuai f o g(x) = 6x² + 7 dan g(x) = 3x²+ 4, tentukan fungsi f (x) : https://brainly.co.id/tugas/50087120Contoh soal Jika f(x) =x²-x dan g(x) =1-2x ,maka a. f(x) + g(x) dan b. f(x) - g(x) : https://brainly.co.id/tugas/50195884[tex] \: [/tex][tex] \: [/tex]Detail JawabanKelas : 11 SMABab : 2Sub Bab : Bab 6 - FungsiKode Kategorisasi : 11.2.6Kata Kunci : Fungsi Komposisi dan Fungsi invers.

Semoga dengan pertanyaan yang sudah terjawab oleh Sinogen dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Sat, 18 Jun 22