Bentuk sederhana dari: 3√3+√7 per √7-2√3

Berikut ini adalah pertanyaan dari Elen19 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Bentuk sederhana dari:
3√3+√7 per √7-2√3

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Bentuk sederhana dari :   3√3 + √7 per √7 – 2√3

Untuk merasionalkan bentuk akar penyebut pecahan dengan cara mengalikan pembilang dan penyebut dengan bentuk sekawan dari penyebut pecahan yang bersangkutan.

Merasionalkan Penyebut Pecahan

1.  Untuk pecahan \frac{c}{\sqrt{a} + \sqrt{b}}, pembilang dan penyebut dikalikan dengan √a - √b, sehingga

\frac{c}{\sqrt{a} + \sqrt{b}} = \frac{c}{\sqrt{a} + \sqrt{b}} \times \frac{\sqrt{a} - \sqrt{b}}{\sqrt{a} - \sqrt{b}}

2.  Untuk pecahan \frac{c}{\sqrt{a} - \sqrt{b}}, pembilang dan penyebut dikalikan dengan √a + √b, sehingga

\frac{c}{\sqrt{a} - \sqrt{b}} = \frac{c}{\sqrt{a} - \sqrt{b}} \times \frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} + \sqrt{b}}

Pembahasan

  • Bentuk sederhana

$\begin {align} \frac{ 3\sqrt{3} + \sqrt{7} }{\sqrt{7} - 2\sqrt{3} } & = \frac{ 3\sqrt{3} + \sqrt{7} }{\sqrt{7} - 2\sqrt{3}} \times \frac{\sqrt{7} + 2\sqrt{3} }{\sqrt{7} + 2\sqrt{3} }\\ & = \frac{3\sqrt{21} + 6 (3) + 7 + 2\sqrt{21} }{7 + 2\sqrt{21} - 2\sqrt{21} - 4 (3)} \\ & =\frac{3\sqrt{21}+ 2\sqrt{21} + 18 + 7}{7 - 12} \\ & = \frac{5\sqrt{21} + 25}{-5} \\ & = \frac{-5 (-\sqrt{21} - 5)}{-5} \\ & = -\sqrt{21} - 5 \\ & = -1 (\sqrt{21} + 5) \end{align}

Jadi bentuk sederhana dari  3√3 + √7 per √7 – 2√3 adalah -1 (√21 + 5)

***Bila penulisan lataks tidak jelas silahkan lihat lampiran

-------------------------------------------

Pelajari lebih lanjut tentang Pangkat dan Bentuk Akar

  1. Bentuk sederhana dari (4√18 - 6√6) / (3√2 + 2√6) adalah → yomemimo.com/tugas/20920484
  2. Bentuk sederhana dari (3√2 + 2√3) (3√2 - 2√3) → yomemimo.com/tugas/3781420
  3. Sederhanakan operasi perpangkatan. a. (3⁷ × 3²) / 3³ → yomemimo.com/tugas/3064168
  4. Bentuk sederhana dari (2√40 - 8√2) / (2√10 + 2√18) → yomemimo.com/tugas/21411671

Detil Jawaban

  • Kelas          : 9 SMP (K-13 revisi 2018)
  • Mapel         : Matematika
  • Bab             : 1 - Bilangan Berpangkat dan Bentuk Akar
  • Kode           : 9.2.1
  • Kata kunci : merasionalkan bentuk akar, pecahan, sekawan, bentuk sederhana

Semoga bermanfaat

Bentuk sederhana dari :   3√3 + √7 per √7 – 2√3Untuk merasionalkan bentuk akar penyebut pecahan dengan cara mengalikan pembilang dan penyebut dengan bentuk sekawan dari penyebut pecahan yang bersangkutan.Merasionalkan Penyebut Pecahan1.  Untuk pecahan [tex]\frac{c}{\sqrt{a} + \sqrt{b}}[/tex], pembilang dan penyebut dikalikan dengan √a - √b, sehingga [tex]\frac{c}{\sqrt{a} + \sqrt{b}} = \frac{c}{\sqrt{a} + \sqrt{b}} \times \frac{\sqrt{a} - \sqrt{b}}{\sqrt{a} - \sqrt{b}}[/tex]2.  Untuk pecahan [tex]\frac{c}{\sqrt{a} - \sqrt{b}}[/tex], pembilang dan penyebut dikalikan dengan √a + √b, sehingga [tex]\frac{c}{\sqrt{a} - \sqrt{b}} = \frac{c}{\sqrt{a} - \sqrt{b}} \times \frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} + \sqrt{b}}[/tex]PembahasanBentuk sederhana[tex]$\begin {align} \frac{ 3\sqrt{3} + \sqrt{7} }{\sqrt{7} - 2\sqrt{3} } & = \frac{ 3\sqrt{3} + \sqrt{7} }{\sqrt{7} - 2\sqrt{3}} \times \frac{\sqrt{7} + 2\sqrt{3} }{\sqrt{7} + 2\sqrt{3} }\\ & = \frac{3\sqrt{21} + 6 (3) + 7 + 2\sqrt{21} }{7 + 2\sqrt{21} - 2\sqrt{21} - 4 (3)} \\ & =\frac{3\sqrt{21}+ 2\sqrt{21} + 18 + 7}{7 - 12} \\ & = \frac{5\sqrt{21} + 25}{-5} \\ & = \frac{-5 (-\sqrt{21} - 5)}{-5} \\ & = -\sqrt{21} - 5 \\ & = -1 (\sqrt{21} + 5) \end{align}[/tex]Jadi bentuk sederhana dari  3√3 + √7 per √7 – 2√3 adalah -1 (√21 + 5)***Bila penulisan lataks tidak jelas silahkan lihat lampiran-------------------------------------------Pelajari lebih lanjut tentang Pangkat dan Bentuk Akar Bentuk sederhana dari (4√18 - 6√6) / (3√2 + 2√6) adalah → brainly.co.id/tugas/20920484Bentuk sederhana dari (3√2 + 2√3) (3√2 - 2√3) → brainly.co.id/tugas/3781420Sederhanakan operasi perpangkatan. a. (3⁷ × 3²) / 3³ → brainly.co.id/tugas/3064168Bentuk sederhana dari (2√40 - 8√2) / (2√10 + 2√18) → brainly.co.id/tugas/21411671Detil JawabanKelas          : 9 SMP (K-13 revisi 2018)Mapel         : MatematikaBab             : 1 - Bilangan Berpangkat dan Bentuk AkarKode           : 9.2.1Kata kunci : merasionalkan bentuk akar, pecahan, sekawan, bentuk sederhanaSemoga bermanfaat

Semoga dengan pertanyaan yang sudah terjawab oleh Ridafahmi dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Tue, 10 Nov 15