plis tlg di jwb hiks, buka dulu dehhnomer 10-16 ajaa

Berikut ini adalah pertanyaan dari sarinawang818 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Plis tlg di jwb hiks, buka dulu dehh
nomer 10-16 ajaa pls plss plssss . .​
plis tlg di jwb hiks, buka dulu dehhnomer 10-16 ajaa pls plss plssss . .​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

NOMOR 10.

(C). \frac{1}{18}

PEMBAHASAN :

{(3 \sqrt{2})}^{ - 2} = \frac{1}{{(3 \sqrt{2})}^{2}} = \frac{1}{(3 \sqrt{2})(3 \sqrt{2})} = \frac{1}{9 \sqrt{4}} = \frac{1}{9 \times 2} = \frac{1}{18}

NOMOR 11.

(C). 54

PEMBAHASAN :

\sqrt[3]{216} \times \sqrt{81} = 6 \times 9 = 54

NOMOR 12.

(D). 32 \sqrt{3} \: (2 - 3 \sqrt{2})

PEMBAHASAN :

4 \sqrt{32} \: ( \sqrt{24} - 3 \sqrt{12})

= 4 \sqrt{16 \times 2} \: ( \sqrt{4 \times 6} - 3 \sqrt{4 \times 3})

= 4 \times 4 \sqrt{2} \: (2 \sqrt{6} - 3 \times 2 \sqrt{3})

= 16 \sqrt{2} \: (2 \sqrt{6} - 6 \sqrt{3})

 = 32 \sqrt{12} - 96 \sqrt{6}

 = 32 \sqrt{4 \times 3} - 96 \sqrt{6}

 = 32 \times 2 \sqrt{3} - 96 \sqrt{6}

 = 32 \sqrt{3} \: (2 - 3 \sqrt{2})

NOMOR 13.

(B). 48 {a}^{7} {b}^{4}

PEMBAHASAN :

{3a}^{3} \times {(2ab)}^{4} = {3a}^{3} \times {2}^{4} {a}^{4} {b}^{4} = {3a}^{3} \times 16 {a}^{4} {b}^{4}

 = 3 \times 16 {a}^{3 + 4} {b}^{4} = 48 {a}^{7} {b}^{4}

NOMOR 14.

(A).  \frac{2}{3} \sqrt{3}

PEMBAHASAN :

\frac{2}{\sqrt{3}} = \frac{2}{\sqrt{3}} \times \frac{ \sqrt{3} }{ \sqrt{3} } = \frac{2 \sqrt{3} }{ \sqrt{9} } = \frac{2}{3} \sqrt{3}

NOMOR 15.

(B).  {3}^{ - 5}

PEMBAHASAN :

\frac{1}{243} = {(243)}^{ - 1} = {({3}^{5})}^{ - 1} = {3}^{5 \times ( - 1)} = {3}^{ - 5}

NOMOR 16.

(C). \frac{2}{3} {p}^{6} {qr}^{2}

PEMBAHASAN :

(\frac{{p}^{5} {q}^{3} {r}^{3}}{ {4qr}^{5}}) \times (\frac{8pr}{ {3qr}^{ - 3}}) = \frac{8 {p}^{5 + 1} {q}^{3} {r}^{3 + 1}}{4 \times 3 {q}^{1 + 1} {r}^{5 + ( - 3)}}

= \frac{8 {p}^{6} {q}^{3} {r}^{4}}{12 {q}^{2} {r}^{2}} = \frac{2}{3} {p}^{6} {q}^{3 - 2} {r}^{4 - 2} = \frac{2}{3} {p}^{6} {qr}^{2}

NOMOR 10.(C). [tex]\frac{1}{18} [/tex]PEMBAHASAN :[tex]{(3 \sqrt{2})}^{ - 2} = \frac{1}{{(3 \sqrt{2})}^{2}} = \frac{1}{(3 \sqrt{2})(3 \sqrt{2})} = \frac{1}{9 \sqrt{4}} = \frac{1}{9 \times 2} = \frac{1}{18} [/tex]NOMOR 11.(C). [tex]54[/tex]PEMBAHASAN :[tex]\sqrt[3]{216} \times \sqrt{81} = 6 \times 9 = 54 [/tex]NOMOR 12.(D). [tex]32 \sqrt{3} \: (2 - 3 \sqrt{2}) [/tex]PEMBAHASAN :[tex]4 \sqrt{32} \: ( \sqrt{24} - 3 \sqrt{12}) [/tex][tex]= 4 \sqrt{16 \times 2} \: ( \sqrt{4 \times 6} - 3 \sqrt{4 \times 3}) [/tex][tex]= 4 \times 4 \sqrt{2} \: (2 \sqrt{6} - 3 \times 2 \sqrt{3}) [/tex][tex]= 16 \sqrt{2} \: (2 \sqrt{6} - 6 \sqrt{3}) [/tex][tex] = 32 \sqrt{12} - 96 \sqrt{6} [/tex][tex] = 32 \sqrt{4 \times 3} - 96 \sqrt{6} [/tex][tex] = 32 \times 2 \sqrt{3} - 96 \sqrt{6} [/tex][tex] = 32 \sqrt{3} \: (2 - 3 \sqrt{2})[/tex]NOMOR 13.(B). [tex]48 {a}^{7} {b}^{4} [/tex]PEMBAHASAN :[tex]{3a}^{3} \times {(2ab)}^{4} = {3a}^{3} \times {2}^{4} {a}^{4} {b}^{4} = {3a}^{3} \times 16 {a}^{4} {b}^{4} [/tex][tex] = 3 \times 16 {a}^{3 + 4} {b}^{4} = 48 {a}^{7} {b}^{4} [/tex]NOMOR 14.(A). [tex] \frac{2}{3} \sqrt{3} [/tex]PEMBAHASAN :[tex]\frac{2}{\sqrt{3}} = \frac{2}{\sqrt{3}} \times \frac{ \sqrt{3} }{ \sqrt{3} } = \frac{2 \sqrt{3} }{ \sqrt{9} } = \frac{2}{3} \sqrt{3} [/tex]NOMOR 15.(B). [tex] {3}^{ - 5} [/tex]PEMBAHASAN :[tex]\frac{1}{243} = {(243)}^{ - 1} = {({3}^{5})}^{ - 1} = {3}^{5 \times ( - 1)} = {3}^{ - 5} [/tex]NOMOR 16.(C). [tex]\frac{2}{3} {p}^{6} {qr}^{2} [/tex]PEMBAHASAN :[tex](\frac{{p}^{5} {q}^{3} {r}^{3}}{ {4qr}^{5}}) \times (\frac{8pr}{ {3qr}^{ - 3}}) = \frac{8 {p}^{5 + 1} {q}^{3} {r}^{3 + 1}}{4 \times 3 {q}^{1 + 1} {r}^{5 + ( - 3)}} [/tex][tex]= \frac{8 {p}^{6} {q}^{3} {r}^{4}}{12 {q}^{2} {r}^{2}} = \frac{2}{3} {p}^{6} {q}^{3 - 2} {r}^{4 - 2} = \frac{2}{3} {p}^{6} {qr}^{2} [/tex]NOMOR 10.(C). [tex]\frac{1}{18} [/tex]PEMBAHASAN :[tex]{(3 \sqrt{2})}^{ - 2} = \frac{1}{{(3 \sqrt{2})}^{2}} = \frac{1}{(3 \sqrt{2})(3 \sqrt{2})} = \frac{1}{9 \sqrt{4}} = \frac{1}{9 \times 2} = \frac{1}{18} [/tex]NOMOR 11.(C). [tex]54[/tex]PEMBAHASAN :[tex]\sqrt[3]{216} \times \sqrt{81} = 6 \times 9 = 54 [/tex]NOMOR 12.(D). [tex]32 \sqrt{3} \: (2 - 3 \sqrt{2}) [/tex]PEMBAHASAN :[tex]4 \sqrt{32} \: ( \sqrt{24} - 3 \sqrt{12}) [/tex][tex]= 4 \sqrt{16 \times 2} \: ( \sqrt{4 \times 6} - 3 \sqrt{4 \times 3}) [/tex][tex]= 4 \times 4 \sqrt{2} \: (2 \sqrt{6} - 3 \times 2 \sqrt{3}) [/tex][tex]= 16 \sqrt{2} \: (2 \sqrt{6} - 6 \sqrt{3}) [/tex][tex] = 32 \sqrt{12} - 96 \sqrt{6} [/tex][tex] = 32 \sqrt{4 \times 3} - 96 \sqrt{6} [/tex][tex] = 32 \times 2 \sqrt{3} - 96 \sqrt{6} [/tex][tex] = 32 \sqrt{3} \: (2 - 3 \sqrt{2})[/tex]NOMOR 13.(B). [tex]48 {a}^{7} {b}^{4} [/tex]PEMBAHASAN :[tex]{3a}^{3} \times {(2ab)}^{4} = {3a}^{3} \times {2}^{4} {a}^{4} {b}^{4} = {3a}^{3} \times 16 {a}^{4} {b}^{4} [/tex][tex] = 3 \times 16 {a}^{3 + 4} {b}^{4} = 48 {a}^{7} {b}^{4} [/tex]NOMOR 14.(A). [tex] \frac{2}{3} \sqrt{3} [/tex]PEMBAHASAN :[tex]\frac{2}{\sqrt{3}} = \frac{2}{\sqrt{3}} \times \frac{ \sqrt{3} }{ \sqrt{3} } = \frac{2 \sqrt{3} }{ \sqrt{9} } = \frac{2}{3} \sqrt{3} [/tex]NOMOR 15.(B). [tex] {3}^{ - 5} [/tex]PEMBAHASAN :[tex]\frac{1}{243} = {(243)}^{ - 1} = {({3}^{5})}^{ - 1} = {3}^{5 \times ( - 1)} = {3}^{ - 5} [/tex]NOMOR 16.(C). [tex]\frac{2}{3} {p}^{6} {qr}^{2} [/tex]PEMBAHASAN :[tex](\frac{{p}^{5} {q}^{3} {r}^{3}}{ {4qr}^{5}}) \times (\frac{8pr}{ {3qr}^{ - 3}}) = \frac{8 {p}^{5 + 1} {q}^{3} {r}^{3 + 1}}{4 \times 3 {q}^{1 + 1} {r}^{5 + ( - 3)}} [/tex][tex]= \frac{8 {p}^{6} {q}^{3} {r}^{4}}{12 {q}^{2} {r}^{2}} = \frac{2}{3} {p}^{6} {q}^{3 - 2} {r}^{4 - 2} = \frac{2}{3} {p}^{6} {qr}^{2} [/tex]NOMOR 10.(C). [tex]\frac{1}{18} [/tex]PEMBAHASAN :[tex]{(3 \sqrt{2})}^{ - 2} = \frac{1}{{(3 \sqrt{2})}^{2}} = \frac{1}{(3 \sqrt{2})(3 \sqrt{2})} = \frac{1}{9 \sqrt{4}} = \frac{1}{9 \times 2} = \frac{1}{18} [/tex]NOMOR 11.(C). [tex]54[/tex]PEMBAHASAN :[tex]\sqrt[3]{216} \times \sqrt{81} = 6 \times 9 = 54 [/tex]NOMOR 12.(D). [tex]32 \sqrt{3} \: (2 - 3 \sqrt{2}) [/tex]PEMBAHASAN :[tex]4 \sqrt{32} \: ( \sqrt{24} - 3 \sqrt{12}) [/tex][tex]= 4 \sqrt{16 \times 2} \: ( \sqrt{4 \times 6} - 3 \sqrt{4 \times 3}) [/tex][tex]= 4 \times 4 \sqrt{2} \: (2 \sqrt{6} - 3 \times 2 \sqrt{3}) [/tex][tex]= 16 \sqrt{2} \: (2 \sqrt{6} - 6 \sqrt{3}) [/tex][tex] = 32 \sqrt{12} - 96 \sqrt{6} [/tex][tex] = 32 \sqrt{4 \times 3} - 96 \sqrt{6} [/tex][tex] = 32 \times 2 \sqrt{3} - 96 \sqrt{6} [/tex][tex] = 32 \sqrt{3} \: (2 - 3 \sqrt{2})[/tex]NOMOR 13.(B). [tex]48 {a}^{7} {b}^{4} [/tex]PEMBAHASAN :[tex]{3a}^{3} \times {(2ab)}^{4} = {3a}^{3} \times {2}^{4} {a}^{4} {b}^{4} = {3a}^{3} \times 16 {a}^{4} {b}^{4} [/tex][tex] = 3 \times 16 {a}^{3 + 4} {b}^{4} = 48 {a}^{7} {b}^{4} [/tex]NOMOR 14.(A). [tex] \frac{2}{3} \sqrt{3} [/tex]PEMBAHASAN :[tex]\frac{2}{\sqrt{3}} = \frac{2}{\sqrt{3}} \times \frac{ \sqrt{3} }{ \sqrt{3} } = \frac{2 \sqrt{3} }{ \sqrt{9} } = \frac{2}{3} \sqrt{3} [/tex]NOMOR 15.(B). [tex] {3}^{ - 5} [/tex]PEMBAHASAN :[tex]\frac{1}{243} = {(243)}^{ - 1} = {({3}^{5})}^{ - 1} = {3}^{5 \times ( - 1)} = {3}^{ - 5} [/tex]NOMOR 16.(C). [tex]\frac{2}{3} {p}^{6} {qr}^{2} [/tex]PEMBAHASAN :[tex](\frac{{p}^{5} {q}^{3} {r}^{3}}{ {4qr}^{5}}) \times (\frac{8pr}{ {3qr}^{ - 3}}) = \frac{8 {p}^{5 + 1} {q}^{3} {r}^{3 + 1}}{4 \times 3 {q}^{1 + 1} {r}^{5 + ( - 3)}} [/tex][tex]= \frac{8 {p}^{6} {q}^{3} {r}^{4}}{12 {q}^{2} {r}^{2}} = \frac{2}{3} {p}^{6} {q}^{3 - 2} {r}^{4 - 2} = \frac{2}{3} {p}^{6} {qr}^{2} [/tex]

Semoga dengan pertanyaan yang sudah terjawab oleh MaulanaAlief dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Sun, 30 Oct 22