Tolong dibantu no.4 saja, jangan asal pliss

Berikut ini adalah pertanyaan dari sigup pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Tolong dibantu no.4 saja, jangan asal pliss
Tolong dibantu no.4 saja, jangan asal pliss

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

 \displaystyle \begin{array}{|c|c|c|c|c|}\hline x&1&2&3&4\\ \hline f(x)&1&1.414&1.732&2\\ \hline \end{array}

f(2.25) =y_{\text{eksak}}= 1.5

Rumus Interpolasi Lagrange:

 \displaystyle \boxed{f_n(x) = \sum_{i=0}^n L_i(x)f(x_i),\quad L_i(x)=\prod_{\begin{array}{c} j=0\\j\neq i \end{array}}^n \frac{x-x_j}{x_i-x_j}}

.

4.1 Interpolasi Lagrange orde ke-1

 \displaystyle \begin{array}{|c|c|c|}\hline x_i&x_0=2&x_1=3\\ \hline f(x_i)&1.414&1.732\\ \hline\end{array}

 \displaystyle \begin{aligned} L_0(x) &= \frac{x-x_1}{x_0-x_1}\\ L_0(2.25) &= \frac{2.25-3}{2-3} = 0.75 \\ L_1(x) &= \frac{x-x_0}{x_1-x_0}\\ L_1(2.25) &= \frac{2.25-2}{3-2} = 0.25 \end{aligned}

 \displaystyle f_1(2.25) = 1.414\cdot 0.75+1.732\cdot 0.25 = 1.4935

 \displaystyle \varepsilon_r = \left| \frac{1.5-1.4935}{1.5} \right| \times 100\% \approx \boxed{\bold{\underline{\underline{0.4333\% }}}}

.

4.2 Interpolasi Lagrange orde ke-2

 \displaystyle \begin{array}{|c|c|c|c|}\hline x_i&x_0=1&x_1=2&x_2=3 \\ \hline f(x_i)&1&1.414&1.732\\ \hline\end{array}

 \displaystyle \begin{aligned} L_0(x) &= \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}\\ L_0(2.25) &= \frac{(2.25-2)(2.25-3)}{(1-2)(1-3)} = -\frac{3}{32} \\ L_1(x) &= \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}\\ L_1(2.25) &= \frac{(2.25-1)(2.25-3)}{(2-1)(2-3)} = \frac{15}{16} \\ L_2(x) &= \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}\\ L_2(2.25) &= \frac{(2.25-1)(2.25-2)}{(3-1)(3-2)} = \frac{5}{32}\end{aligned}

 \displaystyle f_2(2.25) = 1\cdot\left(-\frac{3}{32}\right)+1.414\cdot \frac{15}{16}+1.732\cdot \frac{5}{32} = 1.5025

 \displaystyle \varepsilon_r = \left| \frac{1.5-1.5025}{1.5} \right| \times 100\% \approx \boxed{\bold{\underline{\underline{0.1667\% }}}}

.

4.3 Interpolasi Lagrange orde ke-3

 \displaystyle \begin{array}{|c|c|c|c|c|}\hline x_i&x_0=1&x_1=2&x_2=3&x_3=4 \\ \hline f(x_i)&1&1.414&1.732&2\\ \hline\end{array}

 \displaystyle \begin{aligned} L_0(x) &= \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}\\ L_0(2.25) &= \frac{(2.25-2)(2.25-3)(2.25-4)}{(1-2)(1-3)(1-4)} = -\frac{7}{128} \\ L_1(x) &= \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}\\ L_1(2.25) &= \frac{(2.25-1)(2.25-3)(2.25-4)}{(2-1)(2-3)(2-4)} = \frac{105}{128} \\ L_2(x) &= \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}\\ L_2(2.25) &= \frac{(2.25-1)(2.25-2)(2.25-4)}{(3-1)(3-2)(3-4)} = \frac{35}{128} \\ L_3(x) &= \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}\\ L_3(2.25) &= \frac{(2.25-1)(2.25-2)(2.25-3)}{(4-1)(4-2)(4-3)} = -\frac{5}{128}\end{aligned}

 \displaystyle f_3(2.25) = 1\cdot\left(-\frac{7}{128}\right)+1.414\cdot \frac{105}{128}+1.732\cdot \frac{35}{128}+2\cdot\left(-\frac{5}{128}\right) \approx 1.5007

 \displaystyle \varepsilon_r = \left| \frac{1.5-1.5007}{1.5} \right| \times 100\% \approx \boxed{\bold{\underline{\underline{0.0467\% }}}}

Semoga dengan pertanyaan yang sudah terjawab oleh MRizky099 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Mon, 26 Jul 21